

Contextual Unification of Classical and Quantum Physics

Philippe Grangier

*Institut d'Optique, CNRS, Université Paris-Saclay
F91127 Palaiseau, France*

- P. Grangier, Eur. J. Phys. 23, 331 (2002)
- A. Auffèves & P. Grangier, Found. Phys. 46, 121 (2016)
- A. Auffèves & P. Grangier, Found. Phys. 50, 1781 (2020)
- N. Farouki & P. Grangier, Found. Sci. 26, 97 (2021)
- P. Grangier, Found. Phys. 51, 76 (2021)
- A. Auffèves & P. Grangier, Entropy 24 (2), 199 (2022)
- M. Van Den Bossche & P. Grangier, Found. Phys. 53:45 (2023)
- M. Van Den Bossche & P. Grangier, Proc. DICE conf. (2023)
- M. Van Den Bossche & P. Grangier, Entropy 25, 1600 (2023)
- P. Grangier et al, Entropy 26 (12), 1004 (2024)
- P. Grangier, Entropy 28 (1), 80 (2026)

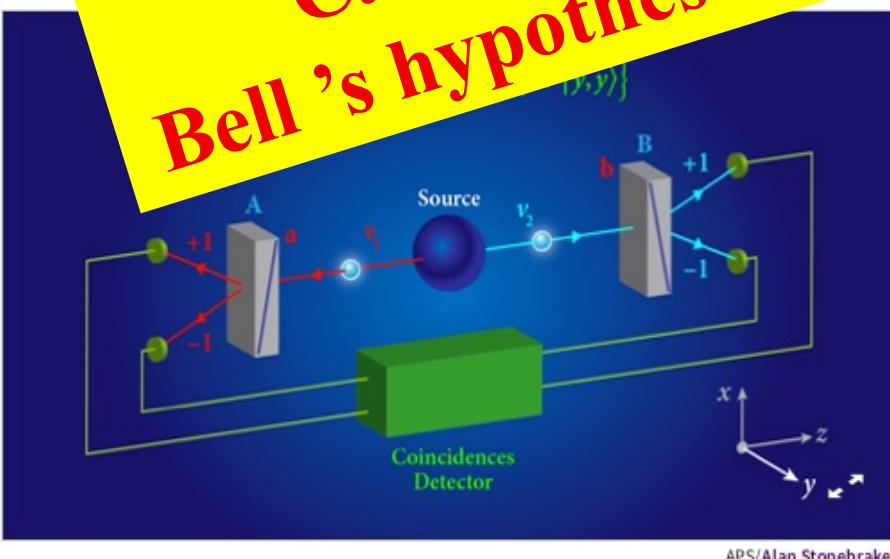
- <https://arxiv.org/abs/q-ph/0012122>
- <http://arxiv.org/abs/1409.2120>
- <http://arxiv.org/abs/1910.13738>
- <http://arxiv.org/abs/1907.11267>
- <http://arxiv.org/abs/2003.03121>
- <https://arxiv.org/abs/2111.10758>
- <https://arxiv.org/abs/2209.01463>
- <https://arxiv.org/abs/2304.07757>
- <https://arxiv.org/abs/2310.06099>
- <https://arxiv.org/abs/2406.05169>
- <https://arxiv.org/abs/2405.03184>

Viewpoint: Closing the Door on Einstein and Bohr's Quantum Debate

Alain Aspect, Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Palaiseau, France

December 16, 2015 • Physics 8, 123

By closing two loopholes at the same time, Alain Aspect and his colleagues remove the last doubts that we have about the reality of quantum information technologies.



**Careful but unavoidable conclusion :
Bell's hypotheses (local realism) are untenable !**

B.
“L
El
M.
“S
Be
L.
“S
W.
“E
“S
in

NOBEL PRIZE 2022

Alain
Aspect

John
Clauser

Anton
Zeilinger

15).

15).

17).

les”

Philosophical standpoint

Many physicists (including me) will support **Physical Realism**, understood as :
The purpose of physics is to study entities of the natural world, existing independently
from any particular observer's perception, and obeying universal and intelligible rules.

Many physicists (inc. me) look at **certain and reproducible events as real**, so we like :
If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.

A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935)

but Bell tests show that this view does not work as such... **so don't forget Bohr** :
The **very conditions which define the possible types of predictions regarding the
future behavior of the system** constitute an inherent element of the description of any
phenomenon to which the term "physical reality" can be properly attached.

N. Bohr, Phys. Rev. 48, 696 (1935)

**What are these « very conditions » required by Bohr to speak
about the physical reality of quantum phenomena ?**

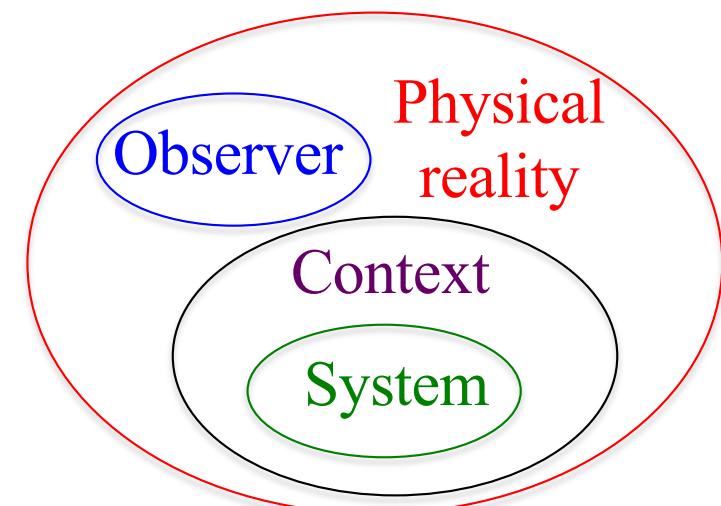
EPR

If, without in any way disturbing a system we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element physical reality corresponding to this physical quantity.

* This statement agrees with both the « **certainty** » required by Einstein and the « **very conditions** » required by Bohr to make and to check definite and reproducible predictions (i.e. with objectivity, taken as contextual).

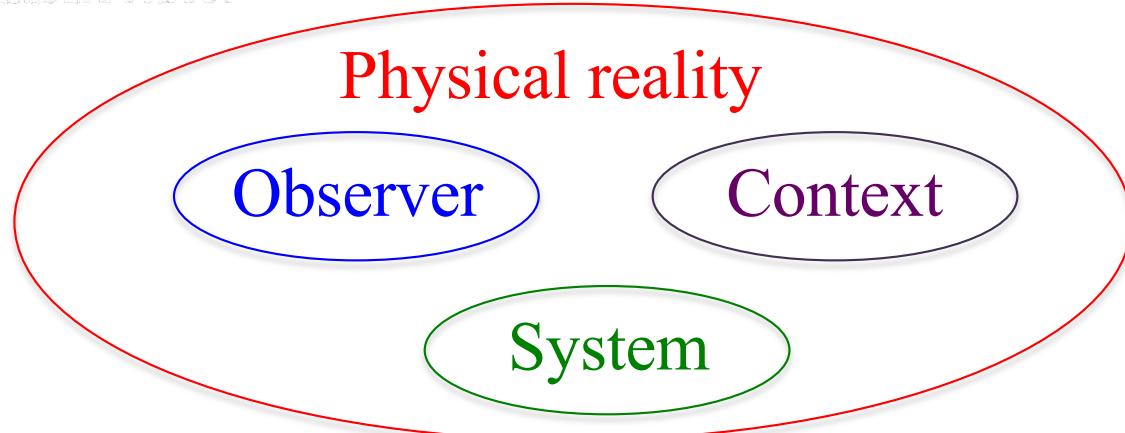
* Therefore the « **object** » carrying the element of physical reality is a system within a context.

* The « **split** » between system and context is not a problem for CSM, because a modality is defined in terms of both the system and the context, and the system **cannot include the context**.



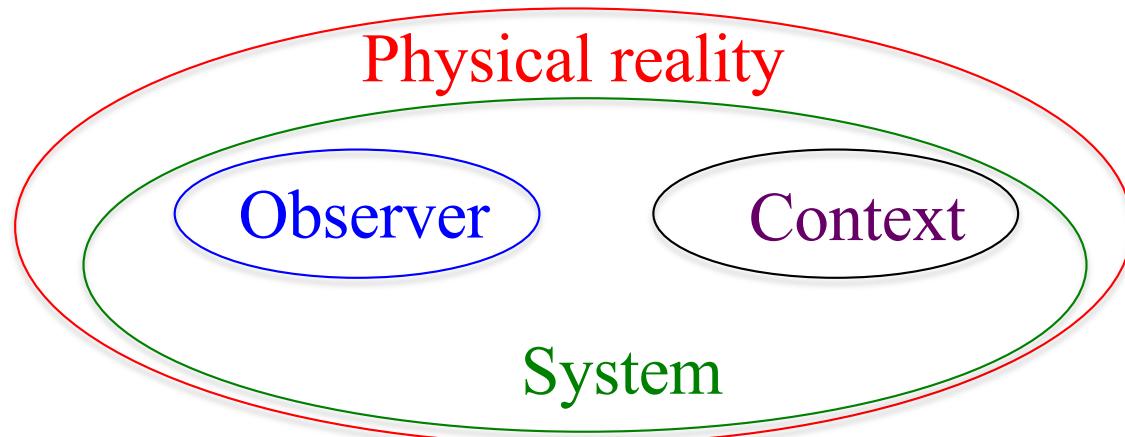
« **Although it can describe *anything*,**
a quantum description cannot include *everything*. »

A. Peres and W. H. Zurek, Am. J. Phys. 50, 807 (1982)



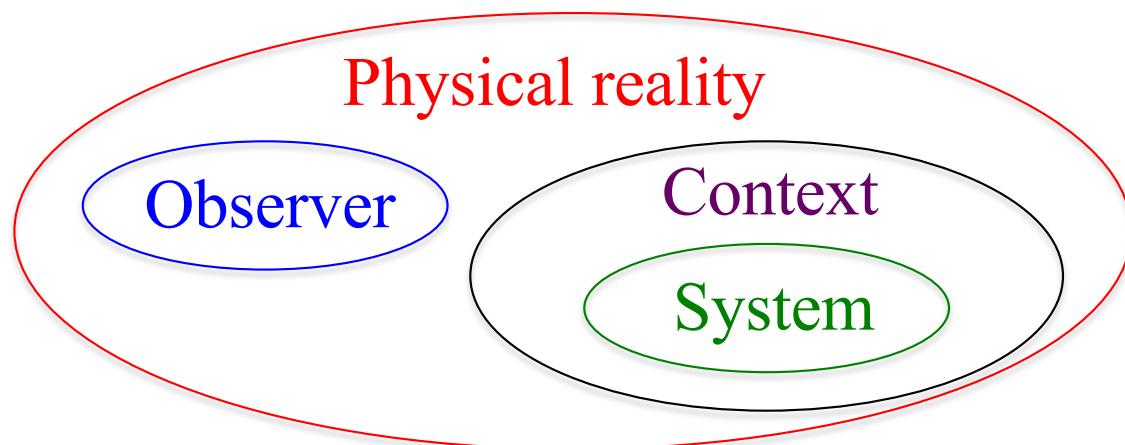
Classical ontology :

the observer can know the "real" physical properties of the system, and the context is only used as an auxiliary tool for measurements.



Usual quantum ontology : through successive "entangling" interactions and unitary evolution, the system will include the context, and also (ultimately) the observer.

Many macroscopic 'realities' ?



CSM ontology : the context appears always between the system and the observer, and definite values of the relevant physical properties (modalities) are attributed jointly to the system and the context.

Unique macroscopic reality !

Axiom 0 (uniqueness of the macroscopic world)

There is a unique macroscopic physical world where a given measurement yields a single result.

Axiom 1 (modalities)

- (i) Given a physical system, a **modality** is defined as the values of a complete set of physical quantities that can be **predicted with certainty and measured repeatedly** on this system.
- (ii) Here “complete” means the largest possible set compatible with certainty and repeatability, for all possible modalities attached to this set. **This complete set of physical quantities is called a context, and a modality is attributed to a system within a context.**
- (iii) Modalities in different contexts may be connected with certainty (**extracontextuality**)

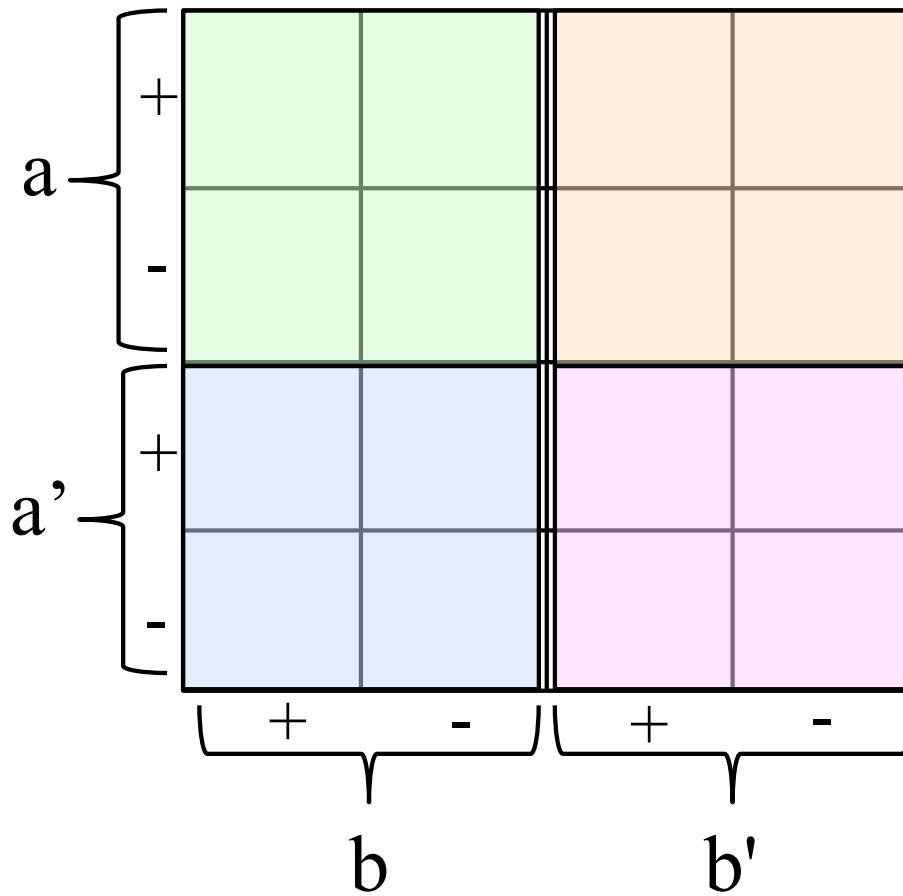
Axiom 2 (contextual quantization)

- (i) **For a given context, there exist N distinguishable modalities, that are mutually exclusive:** if one modality is true, or realized, the others are wrong, or not realized.
- (ii) **The value of N, called the dimension, is a characteristic property of a given quantum system, and is the same in all relevant contexts.**

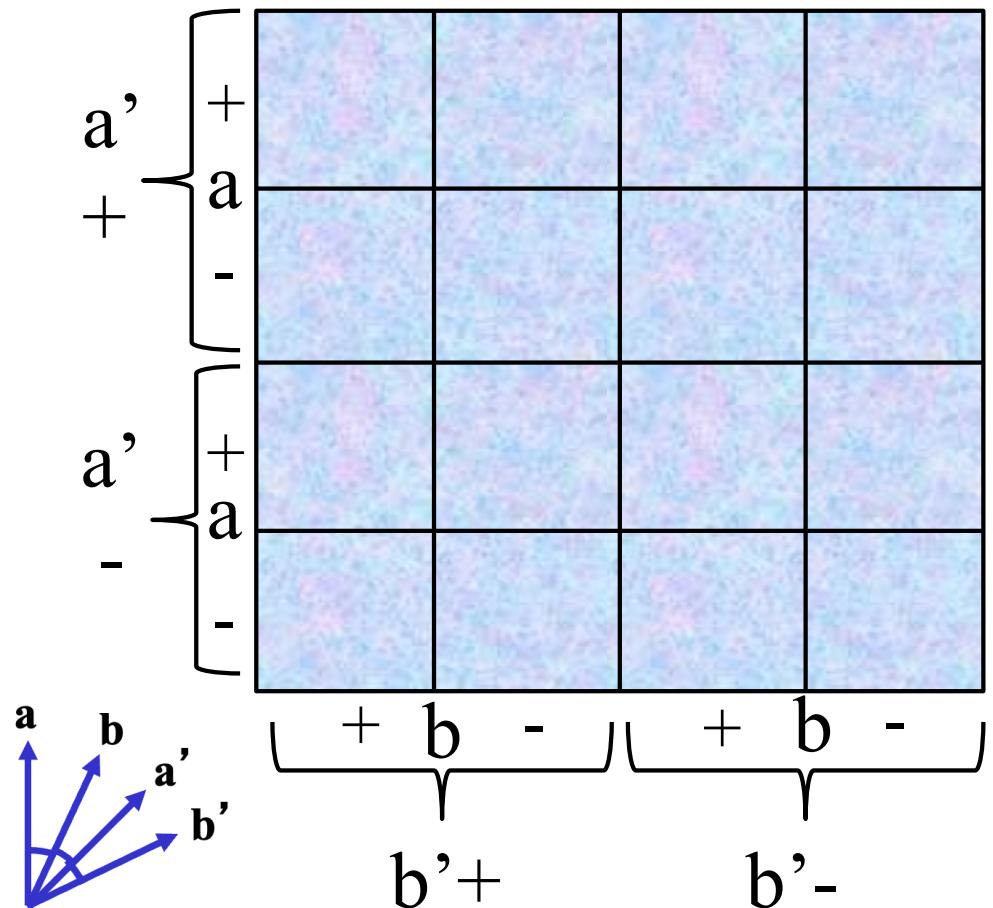
Axiom 3 (changing contexts)

Given axioms 1 and 2, the different contexts relative to a given quantum system are related between themselves by continuous transformations which are associative, have a neutral element (no change), and an inverse. Therefore **the set of context transformations has the structure of a continuous group, which is generally non-commutative.**

4 different contexts : MQ



Global context : classical



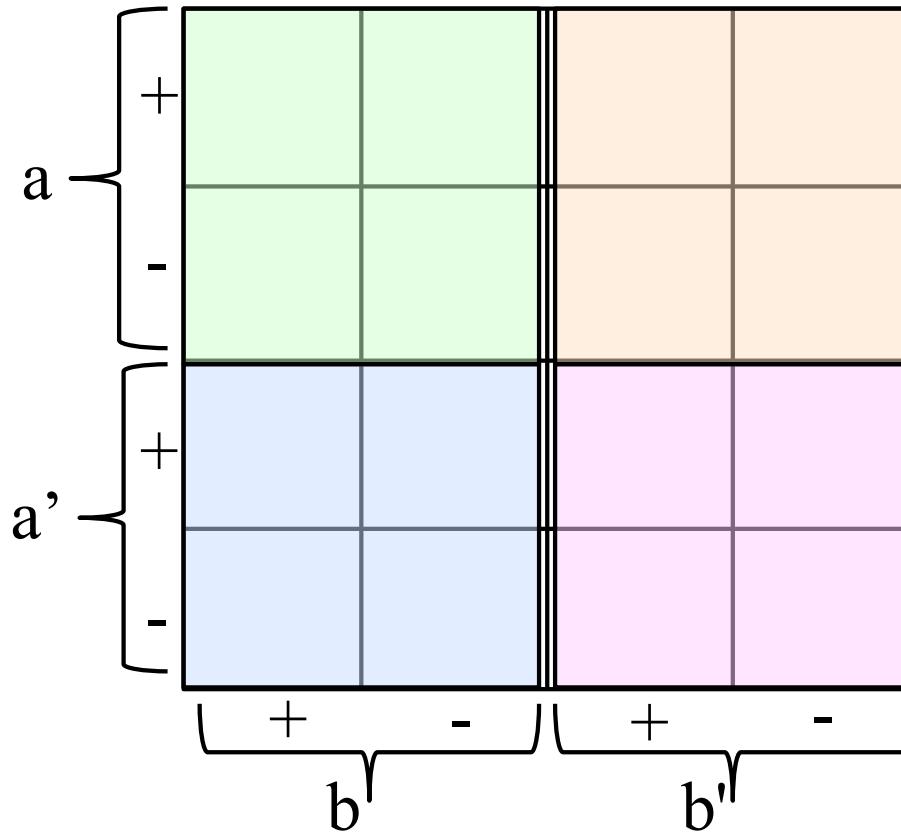
$N = 4$ mutually exclusive modalities in each context (beware: dichotomic results)

Violation of Bell's ineq. :
agreement with expts !

16 mutually exclusive results in a global context

Obeys Bell's ineq. :
contradiction with expts !

4 different contexts : MQ



Crucial observation : The certainty of a modality can be transferred between different contexts !

4 other different contexts : MQ

$ +, -\rangle$	$ -, +\rangle$
$ +, +\rangle$	$ -, -\rangle$
$ 1, 1\rangle$	$ 1, -1\rangle$
$ 1, 0\rangle$	$ 0, 0\rangle$
$ \Psi^+\rangle$	$ \Psi^-\rangle$
$ \Phi^+\rangle$	$ \Phi^-\rangle$

$$S_{z1}, S_{z2}$$

$$m_1 = \pm 1/2$$

$$m_2 = \pm 1/2$$

Total spin S^2, S_z
 $S = 0, 1$
 $m = -1, 0, 1$

Bell states

$$|\Phi^\pm\rangle = (|+, +\rangle \pm |-, -\rangle)/\sqrt{2}$$

$$|\Psi^\pm\rangle = (|+, -\rangle \pm |-, +\rangle)/\sqrt{2}$$

Mutual certainty of modalities is called **extravalence** (equivalence relation) and the probability belongs to the extravalence class, not to the modality.

Now forget QM, and ask : how can we make sure that

- there are only N mutually exclusive modalities in any context
- the certainty of a modality can be transferred between contexts

Inductive reasoning : use projectors !

Let's attribute a $N \times N$ projector to an extravalue class, with

- orthogonal projectors \Leftrightarrow mutually exclusive modalities (in a context)
- same projector \Leftrightarrow mutually certain modalities (in an extravalue class)

- the probability to find a given result (reproducible with certainty after being found) given an initial 'state' is a function $f(P_n)$, where f depends only on the initial state, and $P_n = |\psi_n\rangle\langle\psi_n|$ is a projector associated with the result.
- the probabilities are additive for mutually orthogonal (commuting) projectors, and $\sum_n f(P_n) = 1$ for any orthogonal set such that $\sum_n P_n = \text{Id}$

Alexia Auffèves & Philippe Grangier, Entropy 24, 199 (2022)

<https://arxiv.org/abs/2111.10758>

Deductive reasoning : recovering the usual QM formalism

- **Theorem (Uhlhorn) : unitary transformations between contexts.**

Consider two contexts C_p (with N mutually orthogonal projectors P_i), C_q (with N mutually orthogonal Q_j). Mapping the P_i on the Q_j when changing the context **must preserve the orthogonality of the projectors**: then it must be a **unitary or antiunitary transformation (Uhlhorn's theorem)**.

We want also to connect continuously the context change with the identity (no change of context, $C_p = C_q$) : **unitary transformation only**.

- **Theorem (Gleason) : Born's rule.**

The previous requirements fit with the hypotheses of Gleason's theorem :

- if the probability 1 is reached when changing contexts then one gets

Born's rule for pure states, $p(j | i) = \text{Trace}(P_i Q_j)$.

- otherwise one gets $\text{Trace}(\rho Q_j)$ where ρ is a density matrix.

Completing the (usual) quantum formalism

1/ A projector $|\psi\rangle\langle\psi|$ **does not define a modality** but an extrivalence class, so to make physical sense of the QM formalism one needs

- a state (vector) $|\psi_n\rangle$ or projector $|\psi_n\rangle\langle\psi_n|$

AND

- an observable (operator) $\sum_k a_k |\psi_k\rangle\langle\psi_k|$ with $|\psi_n\rangle \in \{|\psi_k\rangle\}$

Both of them are needed to define a physical modality and to get actual probabilities over a set of mutually exclusive events.

* It can be said that the usual $|\psi\rangle$ is predictively incomplete ; see
P. Grangier, Entropy 23 (12), 1660 (2021) <https://arxiv.org/abs/2012.09736>
Contextual inferences, nonlocality, and the incompleteness of quantum mechanics
* Warning: a PVM is required for reproducibility, not a POVM !

P. Grangier, "Kolmogorovian Censorship, Predictive Incompleteness, and the Locality Loophole in Bell Experiments " Entropy 28(1), 80 (2026) [arXiv:2405.03184]

The Kolmogorov axioms are the formal basis of classical probabilities. They define :

1/ A space of events F , which are subsets of a sample set Ω . The space F may be :

- a **Boolean algebra**: finite logical combinations of events
- a **σ -algebra (tribu)** : countably closed extension required for measure theory
- a **Borel σ -algebra** : canonical choice when topology is present

2/ Probabilities, that are measures on F assigning to each event its probability $P(A)$, which is

- 1. Positive:** $P(A) \geq 0$.
- 2. Normalized:** $P(\Omega) = 1$.
- 3. Countably additive:** For any countable sequence of pairwise disjoint events $(A_n)_{n \geq 1}$

$$P(\bigcup_{n \geq 1} A_n) = \sum_{n \geq 1} P(A_n).$$

Do these axioms apply for Quantum Mechanics ?
This is a rather controversial question, many diverging papers...

P. Grangier, "Kolmogorovian Censorship, Predictive Incompleteness, and the Locality Loophole in Bell Experiments " Entropy 28(1), 80 (2026) [arXiv:2405.03184]

Approximate consensus:

- The axioms of positivity, normalization, and countable additivity for disjoint events are still true, **the difficulty is with the event space**.
- The Kolmogorov probabilities do apply within each context (Kolmogorovian Censorship)
- **The problem is "gluing" all the contexts together**, because the global event space is no longer a σ -algebra.

Solution (à la CSM): Replace the classical σ -algebra with a projection lattice, and disjoint additivity with orthogonal additivity => Gleason's hypothesis !

A single measurement context corresponds to a maximal commuting family of projections: restricted to that commuting subalgebra, the projection lattice is isomorphic to a classical Boolean algebra and the probabilities are Kolmogorovian.

Operationally, Kolmogorovian Censorship and Gleason's hypotheses are therefore complementary: KC explains why probabilities look classical inside a fixed context, while Gleason characterizes when and how those context-by-context classical assignments can be coherently extended to a single quantum probability law on the whole projection lattice.

Completing the (usual) quantum formalism

1/ A projector $|\psi\rangle\langle\psi|$ **does not define a modality** but an extrivalence class, so to make physical sense of the QM formalism one needs

- a state (vector) $|\psi_n\rangle$ or projector $|\psi_n\rangle\langle\psi_n|$

AND

- an observable (operator) $\sum_k a_k |\psi_k\rangle\langle\psi_k|$ with $|\psi_n\rangle \in \{|\psi_k\rangle\}$

Both of them are needed to define a physical modality and to get actual probabilities over a set of mutually exclusive events.

* It can be said that the usual $|\psi\rangle$ is predictively incomplete ; see
 P. Grangier, Entropy 23 (12), 1660 (2021) <https://arxiv.org/abs/2012.09736>
 Contextual inferences, nonlocality, and the incompleteness of quantum mechanics
 * Warning: a PVM is required for reproducibility, not a POVM !

2/ But then the formalism should be able to describe **both** the quantum system and the classical context, i.e. **both sides of the (in)famous « Heisenberg cut »**. **How to do that ?**

About infinite tensor products.

M. Van Den Bossche & P. Grangier, Found. Phys. 53:45 (2023)

Proc. DICE conf. (2023), Entropy 25, 1600 (2023)

- * Composite systems are described using tensor products as usual.
- * **Contexts = infinite tensor product ?** Taking this limit breaks unitarity, and leads to sectorization in type III algebra (see : von Neumann 1939, “On infinite direct products”).

Naively, one would expect to get an “infinitely large Hilbert space”, still with the same algebraic properties, but this turns out to be completely wrong.

Quoting von Neumann*: *Infinite (tensor) products differ essentially from the finite ones in this, that they split up into “incomplete tensor products”. (...) What happens could be described in the quantum-mechanical terminology as a splitting up of the tensor product into “non-intercombining systems of states”, corresponding to the incomplete direct products quoted above.”*

* J. von Neumann, *Compositio Mathematica* 6, 1-77 (1939)

► Statistical physics

- Systems of N microscopic elements
- $N \rightarrow \infty$: macroscopic / thermodynamical limit
- Ex. : non-integer power law correlation functions (non analytic) in critical phenomena $\langle S(x) \cdot S(y) \rangle \approx |x - y|^{-\beta}$, β non integer : *need to take this limit.*

In StatPhys $N \rightarrow \infty$ is a valid model to represent real, macroscopic systems.

► Quantum physics

- Microscopic element α described using a Hilbert space H_α
- The dimension $d_\alpha > 1$ of H_α is finite (qudit...) or countably infinite (square integrable wave functions)
- N microscopic elements are described by $H = H_1 \otimes H_2 \otimes \dots \otimes H_N$
- **It is reasonable to assume macro systems are described by a $N \rightarrow \infty$ limit**
 \Rightarrow **Interesting to understand what are the properties of such a H_∞**

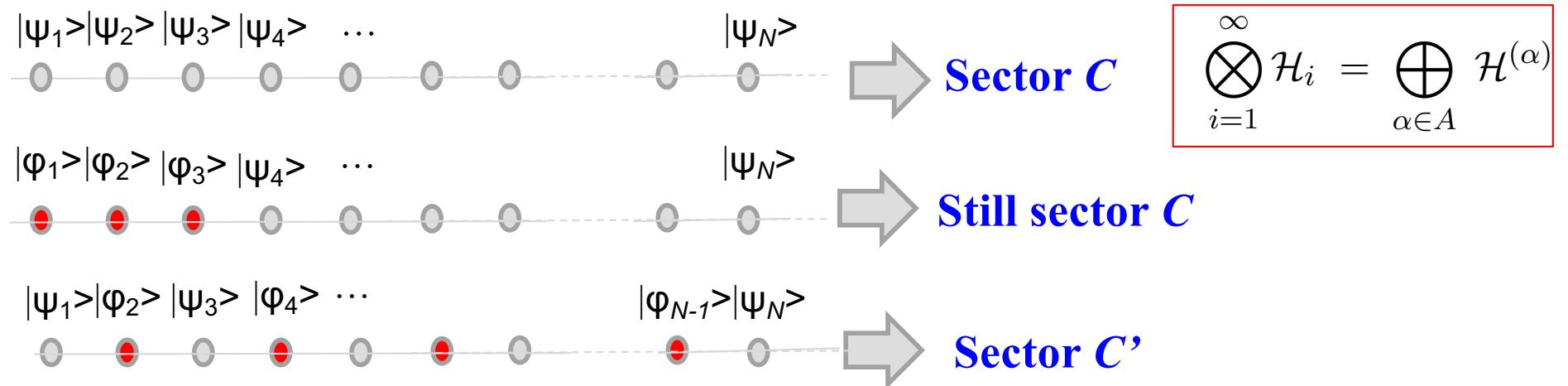
Spoiler : one should expect exotic properties

e.g. for qubits: $d_\alpha \equiv 2$, $\dim(H_\infty) = 2^{\aleph_0} = \aleph_1$ i.e. the power of continuum.

\Rightarrow There is no countable basis dense in H_∞

$\Rightarrow H_\infty$ is not separable – different from what is used in textbook QM

- The tensor product of an infinity of Hilbert spaces $H = \otimes_a H_a$ decomposes into the direct sum of orthogonal « sectors »
- In a sector, vectors differ by a finite (microscopic) number of components
- Between sectors, vectors differ by an infinite (macroscopic) number of components
- Sectors are separable Hilbert spaces, and they are in uncountable number
- Sectors are in direct sum and together they generate the full Hilbert space



- * Under a change of states affecting only a finite number (a microscopic fraction) of the degrees of freedom, the macroscopic system remains in the same sector
- * Under a change of states affecting an infinite number (a macroscopic fraction) of the degrees of freedom, the macroscopic system moves from a sector to an orthogonal one.

Sectorization for states and operators

- ▶ **Superposition of macroscopically different states (in different sectors) cannot be built.**
- ▶ **Operators built from elementary operators commute with projectors on sectors**

At finite N , blocks start building up,
with $\varepsilon \rightarrow 0$ as $N \rightarrow \infty$

In the $N \rightarrow \infty$ limit, sector blocks

- ▶ have countably infinite dimension
- ▶ are in uncountably infinite number
- ▶ have no quantum correlation among one another

=> Sectors are the continuum of classical states of the macro system

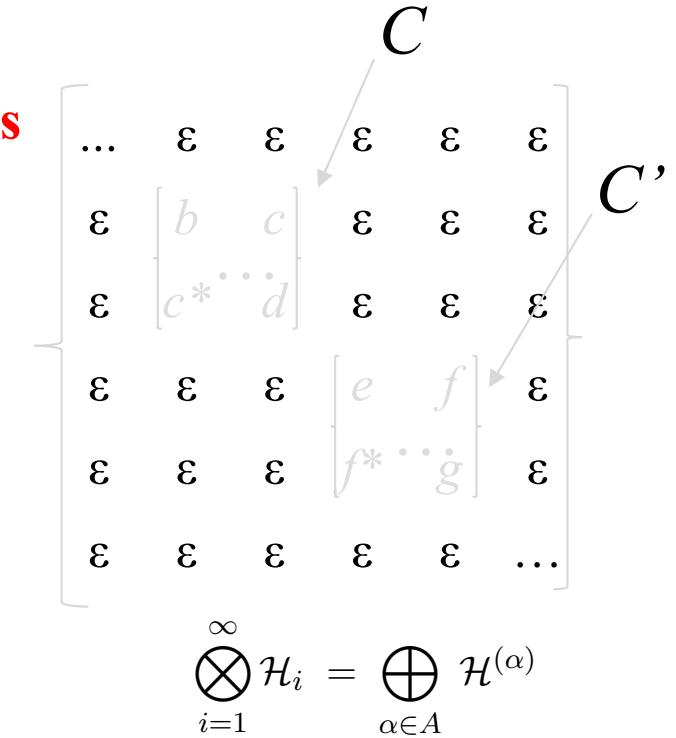
=> For finite N , there are residual correlations between will-be sectors

$$\bigotimes_{i=1}^{\infty} \mathcal{H}_i = \bigoplus_{\alpha \in A} \mathcal{H}^{(\alpha)}$$

The breakdown of the Hilbert space causes a self-decoherence of the system in the large N limit

And what about BEC, superconductors/superfluids, Fermi liquids, etc?

→ The relevant degrees of freedom are quasiparticles, and Fock space is separable.



Found. Phys. 51, 76 (2021) <http://arxiv.org/abs/2003.03121>

M. Van Den Bossche & P. Grangier, <https://arxiv.org/abs/2209.01463>

* Using a sectorized global algebra provides a complete description corresponding to the modalities, and not to the usual $|\psi\rangle$ describing an extravalence class: ok.
The algebra is universal, but there is no universal wavefunction (it is ‘split up’)

*** On this basis, unitary evolution is a feature of properly isolated subsystems, and there is no universal unitarity in quantum theory, but an algebraic description including explicitly the loss of unitary equivalence.**

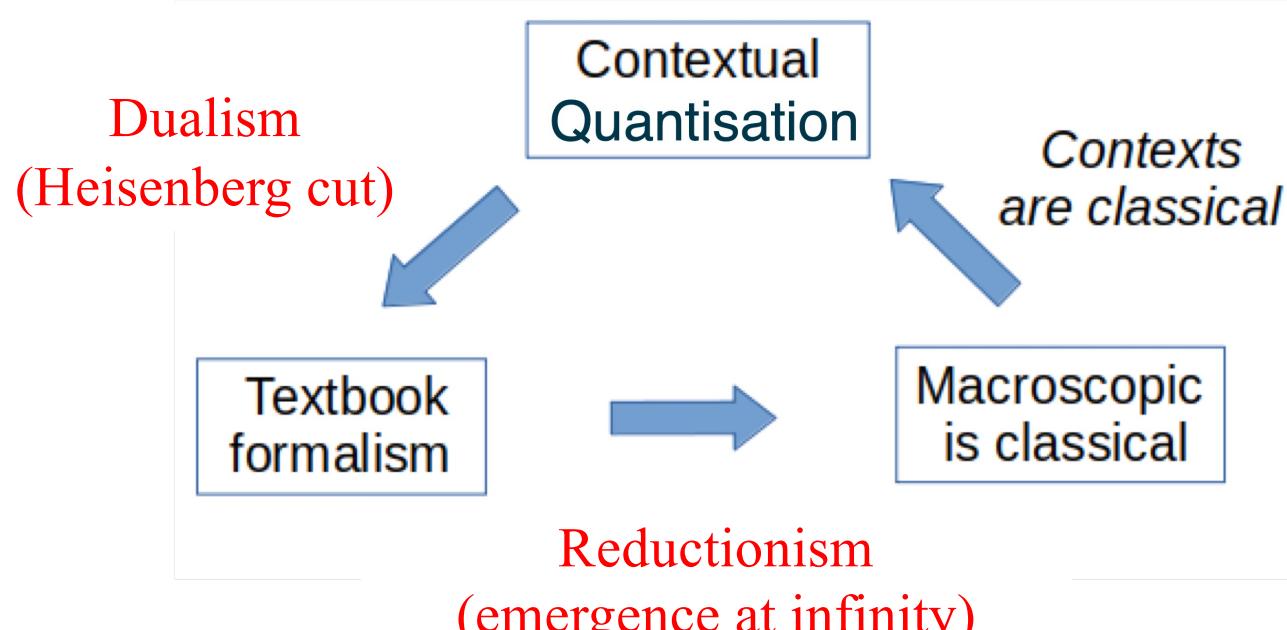
* Important point : there is no need to specify all details for the context (this is not possible : there are « infinitely many » details), and it is enough to label the different sectors by using the **commutative ‘center’ of the type III algebra**.
This is just what is needed for a classical description of the context.

* There were related works during the 1970's e.g. by Hepp, Araki, Emch, Bub.... but they have been superseded by the decoherence approach (Zeh, Zurek et al), which is not considered as fully satisfactory either. **So why looking at this again ?**

Closing the loop of CSM

Found. Phys. 51, 76 (2021) <https://arxiv.org/abs/2209.01463>

Entropy 25, 1600 (2023). <https://arxiv.org/abs/2310.06099>



* **CSM links dualism and reductionism**, so one implies the other in a closed loop. This means that both options can be viewed as *equivalent* (and not antagonistic).

* **Can we use infinities in a physical theory ? Two arguments to say yes:**

On the mathematical side, the non-separable, sectorized limit builds up gradually, at least in the weak topology relevant for von Neumann algebras (work in progress)

On the epistemological side, representations and reality are of different nature, and conceptual elements of a model are not elements of reality.

Some obvious questions (ongoing work!) :

- **Dynamics: can we describe what happens « during a measurement » ?**
- **Even if legitimate, infinity is far away, can we tell how to « approach » it ?**

Dynamics: replace the usual Hamiltonian evolution by the « modular flow » (Tomita – Takesaki) which depends also from a reference state ω :

Heisenberg
Equation, physical time t $A(t) = e^{iHt/\hbar} A e^{-iHt/\hbar} \Rightarrow \sigma_\tau^\omega(A) = \Delta_\omega^{i\tau} A \Delta_\omega^{-i\tau}$ Modular operator Δ_ω , modular time τ

During a measurement some operators become « outer » and are not any more in the accessible algebra: this insures an intrinsic irreversibility.

Modular time: the modular operator Δ depends on the reference state ω (quite unusual !) and the (dimensionless) modular time is different from the physical time. Suitable reference state ω ?

=> KMS state: infinite tensor product of Gibbs states $\rho = \exp(-H/kT)/Z$

=> Thermal time $t_{th} = \hbar / kT$ and modular time $\tau = t / t_{th}$

Some obvious questions (ongoing work!) :

- **Dynamics: can we describe what happens « during a measurement » ?**
- **Even if legitimate, infinity is far away, can we tell how to « approach » it ?**

Approaching infinity: the behaviour is in general model-dependant.

For instance, consider a context (apparatus) made of an infinite spin chain at temperature T , with an Ising coupling $H = \sum_i J S_{Z_i} S_{Z_{i+1}}$ between the spins.

This creates a correlation length $N_c = 1/\log(\coth(J/kT))$ between the spins.

Then the predictions obtained from a chain of length N are exponentially close to those obtained from the modular flow, by terms in $\exp(-N/N_c) \ll 1$ for long chains.

Open questions:

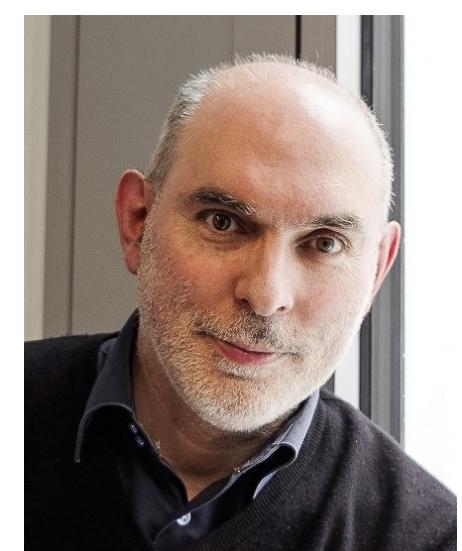
- Is there a special role of type III_1 algebras, associated with KMS states ?
- Unicity from ergodicity ?

Thank you for your attention !

Alexia Auffèves
Quantum physics
Grenoble, France

Nayla Farouki
Philosophy, epistemology
Grenoble, France

Mathias van den Bossche
Thales Alenia Space
Toulouse, France



Olivier Ezratty
EPITA Research Lab.
Paris, France

For an informal introduction to (CSM) quantum physics, see:

The two-spin enigma: from the helium atom to quantum ontology

<https://www.mdpi.com/1099-4300/26/12/1004>

Thank you to Franck Laloë, Roger Balian, Karl Svozil...

* Another view on QM: Contexts, Systems and Modalities (CSM)

A. Auffèves & P. Grangier, Found. Phys. 46, 121 (2016) arxiv:1409.2120

Contexts, Systems and Modalities: a new ontology for quantum mechanics

A. Auffèves & P. Grangier, Found. Phys. 50, 1781 (2020) arxiv:1910.13738

Deriving Born's rule from an Inference to the Best Explanation

A. Auffèves & P. Grangier, Entropy 24 (2), 199 (2022) arxiv:2111.10758

Revisiting Born's rule through Uhlhorn's and Gleason's theorems

* Another view on Bell's theorem: ψ is predictively incomplete

P. Grangier, Entropy 23 (12), 1660 (2021) arxiv:2012.09736

Contextual inferences, nonlocality, and the incompleteness of quantum mechanics

* From John von Neumann (1939) to operator algebras

M. Van Den Bossche & P. Grangier, Found. Phys. 53, 45 (2023) arxiv:2209.01463

Contextual unification of classical and quantum physics

M. Van Den Bossche & P. Grangier, Proc. DICE conf (2023) arxiv:2304.07757

Revisiting Quantum Contextuality in an Algebraic Framework

M. Van Den Bossche & P. Grangier, Entropy 25, 1600 (2023) arxiv:2310.06099

Postulating the Unicity of the Macroscopic Physical World