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B. Hensen et al., Nature 526, 682 (2015).
“Loophole-free Bell Inequality  Violation Using 
Electron Spins  Separated by 1.3 Kilometres”
M. Giustina et al., Phys. Rev. Lett. 115, 250401 (2015).
“Significant-Loophole-Free Test of
Bell's Theorem with Entangled Photons”
L. K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015).
“Strong Loophole-Free Test  of Local Realism”
W. Rosenfeld et al, Phys. Rev. Lett. 119, 010402 (2017).
“Event-ready Bell test using entangled atoms 
simultaneously closing detection and locality loopholes”

Careful but  unavoidable conclusion : 

Bell ’s hypotheses (local realism) are untenable !



Philosophical standpoint  

Many physicists (including me) will support  Physical Realism, understood as : 
The purpose of physics is to study entities of the natural world, existing independently
from any particular observer's perception, and obeying universal and intelligible rules.

Many physicists (inc. me) look at certain and reproducible events as real, so we like :
If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity. 

A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935) 

but Bell tests show that this view does not work as such... so don't forget Bohr : 
The very conditions which define the possible types of predictions regarding the 
future behavior of the system constitute an inherent element of the description of any
phenomenon to which the term "physical reality" can be properly attached.

N. Bohr,  Phys. Rev. 48, 696 (1935) 

What are these  « very conditions » required by Bohr to speak 
about the physical reality of quantum phenomena ? 



Element of physical reality vs modality 

« Although it can describe anything, 
a quantum description cannot include everything. »

A. Peres and W. H. Zurek, Am. J. Phys. 50, 807 (1982)

If, without in any way disturbing a system neither changing the context, 
we can predict with certainty (i.e., with probability equal to unity) the 

value of a physical quantity, then there exists an element physical reality 
corresponding to this physical quantity. It is called a modality. 

* This  statement agrees with both the « certainty »  required by Einstein and 
the « very conditions »  required by Bohr to make and to check  definite and 
reproducible predictions (i.e. with objectivity, taken as contextual).

* Therefore the « object » carrying the element 
of  physical reality is a system within a context.    

Context

Observer

System

Physical 
reality

* The « split » between system and context is not 
a problem for CSM, because a modality is defined
in terms of both the system and  the context, and 
the system cannot include the context.

EPR
+

CSM



Physical reality

ContextObserver

System

Classical ontology :
the observer can know the "real" 
physical properties of the system,  
and the context is only used as an 
auxiliary tool for measurements. 

Physical reality

ContextObserver

System

Usual quantum ontology : through
successive "entangling" interactions 
and unitary evolution, the system 
will include the context, and also
(ultimately ) the observer. 

Many macroscopic ‘realities’ ?  

Some ontology... Found. Phys. 46, 121 (2016)
arxiv:1409.2120

Physical reality
ContextObserver
System

CSM ontology : the context appears
always between the system and the 
observer, and definite values of the 
relevant  physical properties
(modalities) are attributed jointly to 
the system and the context. 

Unique macroscopic reality !   



Axiom 0 (unicity of the macroscopic world)
There is a unique macroscopic physical world where a given measurement yields a single result.
Axiom 1 (modalities)

(i) Given a physical system, a modality is defined as the values of a complete set of physical
quantities that can be predicted with certainty and measured repeatedly on this system. 

(ii) Here “complete” means the largest possible set compatible with certainty and repeatability, 
for all possible modalities attached to this set. This complete set of physical quantities is
called a context, and a modality is attributed to a system within a context. 

(iii) Modalities in different contexts may be connected with certainty (extracontextuality)

Axiom 2 (contextual quantization)

(i) For a given context, there exist N distinguishable modalities, that are mutually
exclusive: if one modality is true, or realized, the others are wrong, or not realized. 

(ii) The value of N, called the dimension, is a characteristic property of a given quantum 
system, and is the same in all relevant contexts. 

Axiom 3 (changing contexts)

Given axioms 1 and 2, the different contexts relative to a given quantum system are related
between themselves by continuous transformations which are associative, have a neutral
element (no change), and an inverse. Therefore the set of context transformations has the 
structure of a continuous group, which is generally non-commutative.

Contexts, Systems & Modalities: CSM axioms



Modalities in a Bell experiment
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Global context : classical

N = 4 mutually exclusive modalities in 
each context (beware: dichotomic results)

Violation of Bell’s ineq. : 
agreement with expts !

16 mutually exclusive results
in a global context

Obeys Bell’s ineq. : 
contradiction with expts !
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4 different contexts : MQ 4 other different contexts : MQ

|+,+〉 | -, -〉

|1,1〉 |1,-1〉

|1,0〉 |0,0〉

|+, -〉 | -, +〉

|Y+〉 |Y-〉

|F+ 〉 |F- 〉

Sz1, Sz2
m1 = ±1/2
m2 = ±1/2

Total spin S2, Sz
S = 0,1  

m = -1,0,1

Bell states
|F± 〉 = (|+,+〉 ± |-, -〉)/√2
|Y± 〉 = (|+,-〉 ± |-, +〉)/√2

Crucial observation : The certainty
of a modality can be transferred

between different contexts !

Modalities in a Bell experiment

Mutual certainty of modalities is called extravalence (equivalence relation) 
and the probability belongs  to the extravalence class, not to the modality. 



Born’s rule : the CSM way (1)

Now forget QM, and ask : how can we make sure that
- there are only N mutually exclusive modalities in any context

- the certainty of a modality can be transferred between contexts

- the probability to find a given result (reproducible with certainty after being 
found) given an initial ‘state’ is a function f (Pn), where f depends only on the 
initial state, and  Pn = |ψn ⟩⟨ψn|  is a projector  associated with the result.

- the probabilities are additive for mutually orthogonal (commuting) projectors, 
and ∑n f (Pn) = 1 for any orthogonal set such that ∑n Pn = Id

Let’s attribute a N x N projector to an extravalence class, with
- orthogonal projectors ó mutually exclusive modalities (in a context)

- same projector ó mutually certain modalities (in an extravalence class)

Inductive reasoning : use projectors !



Deductive reasoning : recovering the usual QM formalism

- Theorem (Uhlhorn) :  unitary transformations between contexts.  
Consider two contexts Cp (with N mutually orthogonal projectors Pi), 
Cq (with N mutually orthogonal Qj).  Mapping the Pi on the Qj when 
changing the context must preserve the orthogonality of the projectors: 
then  it must be a unitary or antiunitary transformation (Uhlhorn’s theorem). 
We want also to connect continuously the context change with the identity (no change of 
context, Cp = Cq) : unitary transformation only. 

- Theorem (Gleason) : Born’s rule. 
The previous requirements fit with the hypotheses of Gleason’s theorem :
- if the probability 1 is reached when changing contexts  then one gets 

     Born’s rule for pure states,  p(j | i) = Trace(Pi Qj). 
- otherwise one gets Trace(r Qj) where r is a density matrix. 

Born’s rule : the CSM way (2)
Alexia Auffèves & Philippe Grangier, Entropy 24, 199 (2022)

https://arxiv.org/abs/2111.10758

https://arxiv.org/abs/2111.10758


1/ A projector | y ⟩⟨ y | does not define a modality but an extravalence
class, so to make physical sense of  the QM formalism one needs

• a state (vector)  | yn ⟩ or projector | yn ⟩⟨ yn | 
AND 

• an observable (operator)  ∑k ak | yk ⟩⟨ yk | with | yn ⟩∈{| yk ⟩}
Both of them are needed to define a physical modality and to get

actual probabilities over a set of mutually exclusive events.

Completing the (usual) quantum formalism

* It can be said that the usual | y ⟩ is predictively incomplete ; see
P. Grangier, Entropy 23 (12),1660 (2021) https://arxiv.org/abs/2012.09736
Contextual inferences, nonlocality, and the incompleteness of quantum mechanics
* Warning: a PVM is required for reproducibility, not a POVM !

https://arxiv.org/abs/2012.09736


The Kolmogorov axioms are the formal basis of classical probabilities. They define :

1/ A space of events F, which are subsets of a sample set Ω. The space F may be :
- a Boolean algebra: finite logical combinations of events
- a σ-algebra (tribu) : countably closed extension required for measure theory
- a Borel σ-algebra : canonical choice when topology is present

2/ Probabilities, that are measures on F assigning to each event its probability P(A), which is
1. Positive: P(A) ≥ 0.
2. Normalized: P(Ω) = 1.
3. Countably additive: For any countable sequence of pairwise disjoint events (An)n≥1

P (Un≥1A n) = ∑n≥1 P(A n).

From Kolmogorov to Gleason

Do these axioms apply for Quantum Mechanics ? 
This is a rather controversial question, many diverging papers…

P. Grangier, "Kolmogorovian Censorship, Predictive Incompleteness, and the 
Locality Loophole in Bell Experiments "  Entropy 28(1), 80 (2026) [arXiv:2405.03184]



Approximate consensus:
- The axioms of positivity, normalization, and countable additivity for disjoint events are 
still true, the difficulty is with the event space.
- The Kolmogorov probabilities do apply within each context (Kolmogorovian Censorship)
- The problem is "gluing" all the contexts together, because the global event space in no 

longer a σ-algebra.

Solution (à la CSM): Replace the classical σ-algebra with a projection lattice, and 
disjoint additivity with orthogonal additivity => Gleason’s hypothesis !
A single measurement context corresponds to a maximal commuting family of projections: 
restricted to that commuting subalgebra, the projection lattice is isomorphic to a classical
Boolean algebra and the probabilities are Kolmogorovian.

Operationally, Kolmogorovian Censorship and Gleason’s hypotheses are therefore
complementary: KC explains why probabilities look classical inside a fixed context, while
Gleason characterizes when and how those context-by-context classical assignments can be
coherently extended to a single quantum probability law on the whole projection lattice.

From Kolmogorov to Gleason
P. Grangier, "Kolmogorovian Censorship, Predictive Incompleteness, and the 

Locality Loophole in Bell Experiments "  Entropy 28(1), 80 (2026) [arXiv:2405.03184]



1/ A projector | y ⟩⟨ y | does not define a modality but an extravalence
class, so to make physical sense of  the QM formalism one needs

• a state (vector)  | yn ⟩ or projector | yn ⟩⟨ yn | 
AND 

• an observable (operator)  ∑k ak | yk ⟩⟨ yk | with | yn ⟩∈{| yk ⟩}
Both of them are needed to define a physical modality and to get

actual probabilities over a set of mutually exclusive events.

2/ But then the formalism should be able to describe both the quantum 
system and the classical context, i.e. both sides of the (in)famous

« Heisenberg cut ».   How to do that ? 

Completing the (usual) quantum formalism

* It can be said that the usual | y ⟩ is predictively incomplete ; see
P. Grangier, Entropy 23 (12),1660 (2021) https://arxiv.org/abs/2012.09736
Contextual inferences, nonlocality, and the incompleteness of quantum mechanics
* Warning: a PVM is required for reproducibility, not a POVM !

https://arxiv.org/abs/2012.09736


Naively, one would expect to get an “infinitely large Hilbert space”, still with
the same algebraic properties, but this turns out to be completely wrong. 

Quoting von Neumann*:  Infinite (tensor) products differ essentially from the 
finite ones in this, that they split up into “incomplete tensor products”. (...) 
What happens could be described in the quantum-mechanical terminology as 
a splitting up of the tensor product into “non-intercombining systems of 
states”, corresponding to the incomplete direct products quoted above.”

* J. von Neumann, Compositio Mathematica 6, 1-77  (1939)

About infinite tensor products. 
M. Van Den Bossche & P. Grangier, Found. Phys. 53:45 (2023)

Proc. DICE conf. (2023), Entropy 25, 1600 (2023)

* Composite systems are described using tensor products as usual.

* Contexts = infinite tensor product ? Taking this limit breaks unitarity, and leads 
to sectorization in type III algebra (see : von Neumann 1939, “On infinite direct products”). 



Modelling macroscopic quantum systems
4 Statistical physics

– Systems of N microscopic elements
– N → ∞ : macroscopic / thermodynamical limit
– Ex. : non-integer power law correlation functions (non analytic) in critical

phenomena ⟨ S(x) . S(y) ⟩ ≈ | x – y |-β , β non integer : need to take this limit. 
In StatPhys N → ∞ is a valid model to represent real, macroscopic systems.

4 Quantum physics
– Microscopic element α described using a Hilbert space Hα
– The dimension dα > 1 of Hα is finite (qudit…) or countably infinite (square 

integrable wave functions)
– N microscopic elements are described by H = H1Ä H2Ä … Ä HN
– It is reasonable to assume macro systems are described by a N → ∞ limit

=> Interesting to understand what are the properties of such a H∞

Spoiler : one should expect exotic properties
e.g. for qubits: dα º 2, dim(H∞) = 2À0 = À1 i.e. the power of continuum.
=> There is no countable basis dense in H∞
=> H∞ is not separable – different from what is used in textbook QM



Quantum states of macroscopic systems

|ψ1>|ψ2> |ψ3> |ψ4> … |ψN>

|φ1>|φ2> |φ3> |ψ4> … |ψN>

|ψ1>|φ2> |ψ3> |φ4> … |ψN>|φN-1>

Sector C

Still sector C

Sector C’

* Under a change of states affecting only a finite number (a microscopic fraction) of the 
degrees of freedom, the macroscopic system remains in the same sector
* Under a change of states affecting an infinite number (a macroscopic fraction) of  the 
degrees of freedom, the macroscopic system moves from a sector to an orthogonal one. 

4The tensor product of an infinity of Hilbert spaces H = ÄαHα decomposes into
the direct sum of orthogonal « sectors »
4In a sector, vectors differ by a finite (microscopic) number of components
4Between sectors, vectors differ by an infinite (macroscopic) number of components
4Sectors are separable Hilbert spaces, and they are in uncountable number
4Sectors are in direct sum and together they generate the full Hilbert space

1 Von Neumann’s 1939 Infinite Tensor Products

1.1 Full versus Incomplete Tensor Products

Let Hi (for i = 1, 2, . . .) be identical copies of a separable Hilbert space (e.g. C2). Von Neumann
showed that the formal “infinite tensor product” space

→⊗

i=1

Hi

splits as a continuously infinite direct sum

→⊗

i=1

Hi =
⊕

ω↑A
H

(ω)
,

where each H
(ω) is an incomplete direct product (a sector). A sector H

(ω) consists of infinite-
tensor-product vectors that di!er from a chosen reference sequence in only finitely many tensor
factors.

1.2 Operator Algebra on the Direct Sum

On the full (non-separable) space
⊗

iHi, the algebra of all bounded operators B
(⊗

iHi
)

remains
type I : it has a trace, minimal projections, and unitary implementers of all automorphisms.
Simply having uncountable or non-separable dimension does not force type III.

On the other hand, it is essential to note that the operators in each H
(ω) do not couple (have

no matrix elements) between di!erent sectors - hence the name of sectors, which is also linked
to the loss of unitary equivalence in the global algebra (for more details see Appendix).

2 The Quasi-Local AF Algebra of a Spin Chain

2.1 Local Algebras and Inductive Limit

Define for each finite block ! = {1, . . . , N} the matrix algebra

A! =
⊗

i↑!
M2(C).

The quasi-local algebra is the norm closure

A =
→⋃

N=1

A{1,...,N}

↓·↓

,

an approximately finite (AF) C↔-algebra: any element of A can be approximated to arbitrary
precision by an observable on a su"ciently large finite block.

Why using C↔- rather than von Neumann- algebras? The quasi-local algebra defined
above is built as a C

↔
-inductive limit which is representation-independent and uses the operator

norm to control approximations by finite-region observables. At this stage we don’t fix any state
or Hilbert-space representation, and only after selecting a faithful normal state ω do we form
the von Neumann algebra εε(A)↗↗ via the weak topology. This two-step procedure separates the
kinematic AF structure (C↔ net) from the dynamical choice of state and modular data.

2



Sectorization and self-decoherence
Sectorization for states and operators
4 Superposition of macroscopically different states 

(in different sectors) cannot be built.
4 Operators built from elementary operators

commute with projectors on sectors
At finite N, blocks start building up, 
with ε → 0 as N → ∞

… ε ε ε ε ε
ε b c ε ε ε
ε c* d ε ε ε
ε ε ε e f ε
ε ε ε f* g ε
ε ε ε ε ε …

C

C’

…

…

In the N → ∞ limit, sector blocks
4have countably infinite dimension
4are in uncountably infinite number
4have no quantum correlation among one another
=> Sectors are the continuum of classical states of the macro system
=> For finite N, there are residual correlations between will-be sectors

The breakdown of the Hilbert space causes a self-decoherence
of the system in the large N limit

And what about BEC, superconductors/superfluids, Fermi liquids, etc? 
→ The relevant degrees of freedom are quasiparticules, and Fock space is separable.  

1 Von Neumann’s 1939 Infinite Tensor Products
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to the loss of unitary equivalence in the global algebra (for more details see Appendix).
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or Hilbert-space representation, and only after selecting a faithful normal state ω do we form
the von Neumann algebra εε(A)↗↗ via the weak topology. This two-step procedure separates the
kinematic AF structure (C↔ net) from the dynamical choice of state and modular data.
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* Using a sectorized global algebra provides a complete description corresponding
to the modalities, and not to the usual |y⟩ describing an extravalence class: ok.
The algebra is universal, but there is no universal wavefunction (it is ‘split up’)

* Important point : there is no need to specify all details for the context (this is
not possible :  there are « infinitely many » details), and it is enough to label the 
different sectors by using the commutative ‘center’ of the type III algebra. 
This is just what is needed for a classical description of the context.

* There were related works during the 1970’s e.g. by Hepp, Araki, Emch, Bub….
but they have been superseded by the decoherence approach (Zeh,  Zurek et al), 
which is not considered as fully satisfactory either. So why looking at this again ?

CSM construction:  universality and completeness
Found. Phys. 51, 76 (2021)   http://arxiv.org/abs/2003.03121

M. Van Den Bossche & P. Grangier, https://arxiv.org/abs/2209.01463

* On this basis, unitary evolution is a feature of properly isolated subsystems, 
and there is no universal unitarity in quantum theory, but an algebraic
description  including explicitly the loss of unitary equivalence. 

http://arxiv.org/abs/
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Closing the loop of CSM
Found. Phys. 51, 76 (2021)   https://arxiv.org/abs/2209.01463

Entropy 25, 1600 (2023).   https://arxiv.org/abs/2310.06099

Infinite Tensor
Products

Dualism
(Heisenberg cut)

Reductionism
(emergence at infinity)

* Can we use infinities in a physical theory ?  Two arguments to say yes:
On the mathematical side, the non-separable, sectorized limit builds up gradually, 
at least in the weak topology relevant for von Neumann algebras (work in progress)
On the epistemological side, representations and reality are of different nature, and

conceptual elements of a model are not elements of reality.

* CSM links dualism and reductionism, so one implies the other in a closed loop. 
This means that both options can be viewed as equivalent (and not antagonistic).

https://arxiv.org/abs/2209.01463
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What next ? 
Some obvious questions (ongoing work!) : 

- Dynamics: can we describe what happens « during a measurement » ?

- Even if legitimate, infinity is far away, can we tell how to « approach » it ? 

Dynamics: replace the usual Hamiltonian evolution by the « modular flow » 
(Tomita – Takesaki)  which depends also from a reference state w :

A(t) = e iHt /  A  e - iHt /  => st w (A) = ∆w
i t A  ∆w

- i t

During a measurement some operators become « outer » and are not any more in 
the accessible algebra: this insures an intrinsic irreversibility.

Heisenberg 
Equation, 

physical time t

Modular
operator ∆w , 

modular time t

Modular time: the modular operator ∆ depends on the reference state w (quite
unusual !) and the (dimentionless) modular time is different from the physical time.
Suitable reference state w ?
=> KMS state: infinite tensor product of Gibbs states r = exp(- H / kT) / Z
=> Thermal time  tth = / kT  and  modular time  t = t / tth
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Approaching infinity: the behaviour is in general model-dependant. 

For instance, consider a context (apparatus) made of an infinite spin chain at 

temperature T, with an Ising coupling H = ∑i J Szi Szi+1 between the spins. 

This creates a correlation length Nc = 1/log(coth( J/kT)) between the spins. 

Then the predictions obtained from a chain of length N are exponentially close to 

those obtained from the modular flow, by terms in exp(-N/Nc) << 1 for long chains.

What next ? 
Some obvious questions (ongoing work!) : 

- Dynamics: can we describe what happens « during a measurement » ?

- Even if legitimate, infinity is far away, can we tell how to « approach » it ? 

Open questions: 

- Is there a special role of type III1 algebras, associated with KMS states  ? 

- Unicity from ergodicity ? 
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