
Modélisation Quantique



28 oct 2019
Mécanique quantique et

théorie unitaire
Jean Claude Dutailly



QUANTUM PHYSICS REVISITED
(Steven Weinberg)

• Quantum Mechanics Proper : 
6 axioms

• Quantum Electrodynamic :
Spin, Photon, Electromagnetism, Atoms and Molecules

• Quantum Theory of Fields :
Elementary particles, nuclear forces, nuclei and transformation of 
elementary particles



THE 6 AXIOMS OF QUANTUM MECHANICS 

• Physical states of a system are represented by vectors ψ in a Hilbert space H,
defined up to a complex number (a ray in a projective Hilbert space)
• Observables are represented by Hermitian operators
• The result of any physical measure is one of the eigen values λ of the associated operator 

Φ. After the measure the system is in the state represented by the corresponding eigen 
vector ψλ

• The probability that the measure is λ is equal to |<ψλ,ψ>|². If a system is in a state 
represented by a normalized vector ψ , and an experiment is done to test whether it is in 
one of the states ψn {n=1..N} which constitutes an orthonormal set of vectors, then the 
probability of finding the system in the state ψn is |<ψn,ψ>|² .

• When two systems interacts, the vectors representing the states belong to the tensorial 
product of the Hilbert states

• For the evolution of the system, the Schrödinger's equation.



THE ISSUES

• The axioms are not related to any specific physical body or property : 
they could be implemented in any domain

• But the common answer has been to find explanations in some 
strange properties of the physical world (the “2 physics” separated by 
a scale, which is not given in the axioms).

• Actually all is about the description of the physical system by a set of 
mathematical equations and variables 



THE TYPICAL FAMILY OF VARIABLES

GENERAL CONDITIONS  1
• 1) The system is represented by a fixed finite number N of variables Xk, k=1…N
• 2) Each variable belongs to an open subset Ok of a Fréchet real vector space Vk
• 3) At least one of the vector spaces Vk is infinite dimensional
• A state of the system is defined by the value X of the variables Xk which are 

functions, belonging to a set O=∏Ok V=∏Vk.
• A Fréchet space is a Hausdorff complete, topological vector space, endowed with 

a countable family of semi-norms. As a consequence it is  metric, normal, 
completely regular, locally convex, second countable,  and T4. Because it is 
second countable it is separable.

• Example :The space of r differentiable, compactly supported, sections of a vector 
bundle is an infinite dimensional Fréchet space



FUNDAMENTAL THEOREMS

• For any system represented by a model meeting the conditions 1, there is a separable, infinite 
dimensional, Hilbert space H, defined up to isomorphism, such that the set of the variables Xk can 
be embedded as an open subset of H which contains 0 and a convex subset

• This is the implementation of the Henderson’s theorem
• For any basis ei,i∈I of V contained in O, there are unique families (εi),(φi),i∈I of independent 

vectors of H, a linear isometry T:V→H such that :
∀X∈O: T(X)=∑<φi,T(X)>εi ∈Ω
∀i∈I:εi=T(ei)
∀i,j∈I:< φi,εj>=δij
and T is a compatible chart of the manifold M=(O,X)
• Any real separable infinite dimensional Hilbert space can be endowed with the structure of a 

complex separable Hilbert space



OBSERVABLE

• The measure of a variable requires an infinite number of figures. The 
simplest solution to define an observable YJ is to select a finite number J of 
vectors of a a basis ei of the vector space V. The map YJ is the projection on 
the vector subspace VJ spanned by the vectors ei,i J.

• To any observable YJ is associated uniquely a self-adjoint, compact, trace-
class operator on H : ZJ=T⁻¹ YJ T such that the measure of the primary 
observable YJ, if the system is in the state X O, is YJ(X)=∑<φi,ZJ(T(X))>ei

• A natural extension of the spaces of these operators leads to commutative 
von Neuman Algebras. In axiomatic QM it is common to define a system 
itself by the von Neuman algebra of its observables. And one sees that this 
algebra is necessarily commutative.



OBSERVABLE AND PROBABILITY

• The choice of an arbitrary set of vectors of a basis introduces an 
uncertainty in the measure. It can be computed. For any primary 
observable ΦJ, the value which is measured is an eigen vector of the 
operator ΦJ, and the probability to measure a value ΦJ(X) if the 
system is in the state X is : Pr(ΦJ(X)|X)=‖ZJ(T(X))‖²/‖T(X)‖²

• A primary observable is actually the best estimator, from a statistical 
point of view, which can be chosen. 

• This is the starting point for a precise definition of the wave function, 
that is a function : W:M×F→ such that W(m,y)=Pr(ΦJ(X)(m)=y|X)) is 
the probability that the measure of the value of any primary 
observable ΦJ(X) at m is y.



CHANGE OF VARIABLE
• Theorem 1 : The same system is represented by the variables X=(X₁,...XN) and X′=(X₁′,...XN′) which 

belong to open subsets O,O′ of the infinite dimensional, separable, Fréchet vector space V. There 
is a conƟnuous map U:V→V, bijecƟve on (O;O′), such that X and X′=U(X) represent the same state 
of the system. For any observable Φ of X, and Φ′ of X′ : Φ′∘U=U∘Φ. Moreover U preserves the 
positive kernel on V (the positive kernel plays a role similar to the probability of transition 
between states of the Wigner's Theorem). Then :

• 1) there is a unitary, linear, bijective map U∈ℒ(H;H) such that : ∀X∈O:U(T(X))=T(U(X)) where H is 
the Hilbert space and T is the linear map : T:V→H associated to X,X′

• 2) U is necessarily a bijective linear map.
• 3) For any observable Φ, Φ′: W′=Φ′(V) is a finite dimensional vector subspace of V, isomorphic to 

W=Φ(V):W′=U(W)
• 4) the associated operators Φ= T∘Φ∘T⁻¹,Φ′=T∘Φ′∘T⁻¹are such that : Φ′=U∘Φ∘U⁻¹and Φ′(H) is a 

vector subspace of H isomorphic to Φ(H)

• One of the consequences of this theorem is that there should exist a unified system of units.



CHANGE OF VARIABLES THROUGH A GROUP

• Theorem 2 : The system is represented by fixed variables, and the 
measures are taken according to procedures which change with g G : 
(V,U) is a representation of the group G : U(g) L(V;V)

then:
• 1) (H,U) is a unitary representation of the group G with 

U(g)=T U(g) T⁻¹. If G is a Lie group and U is conƟnuous then U is 
smooth and (H,U′(1)) is an anti-symmetric representation of the Lie 
algebra T₁G

• 2) For any observable Φ L(V;W): (W,U) is a finite dimensional 
representation of G, and (H,U) a finite dimensional unitary 
representation of the group G



CHANGE OF VARIABLES THROUGH A GROUP

• This last result is especially important in Physics. Any unitary 
representation of a compact or finite group is reducible in the sum of 
orthogonal, finite dimensional, irreducible unitary representations. As 
a consequence the space V of the variables X has the same structure. 
If, as it can be assumed, the state of the system stays in the same 
irreducible representation, it can belong only to some specific finite 
dimensional spaces, defined through the representation or an 
equivalent representation of G. X depends only on a finite number of 
parameters. This is the starting point of quantization.

• If G is commutative we have representations on spaces of functions 
through Fourier transform.



EVOLUTION OF A SYSTEM
• V is an infinite dimensional separable Fréchet space of maps : X=(Xk,k=1,N}::R→E 

where R is an open subset of and E a normed vector space
• 1st Case : General result.
• There is a Hilbert space F, an evoluƟon operator : Θ:R→ (F;F) such that Θ(t) is 

unitary, t:X(t)=Θ(t)(X(0)) F, for each value of t an isometry : E(t) (H;F) such 
that E(t)T(X)=X(t)

• 2nd Case : Pseudo-determinist evolution
• If, for any fixed θ the variables X′(t)=X(t+θ) and X(t) represent the same state 

of the system, and the evaluaƟon map : E(t):V→E::E(t)X=X(t) is conƟnuous, then :
• 1) there is a continuous map S (V;V) such that :E(t)=E(0) exp tS
X(t)=(exp tS X)(0) and the operator S=T S T⁻¹ associated to S is anti-Hermitian
• 2) there are a Hilbert space F, a continuous anti-hermitian map S (F;F) such that 

X(t)=(exp tS)(X(0)). The maps X are smooth.



INTERACTING SYSTEMS

• We have 2 systems S1,S2, meeting conditions as previously,  
represented by similar systems, which interact with each other. We 
want a representation by a unique system, still accounting for the 
existence of the interactions, but without their explicit introduction.

• If we want that the model S(1+2) meets a few sensible conditions, the 
solution is to take the tensor product of the variables specific to S₁,S₂. 
Then the Hilbert space of S(1+2) is the tensorial product of the Hilbert 
spaces associated to each system. 



ENTANGLEMENT AND ITS 
MISUNDERSTANDINGS
• The key point is the difference between the simple direct product : 

V₁×V₂ and the tensorial product V₁ V₂
• A tensor is not necessarily the tensorial product of vectors (if it is so it 

is said to be decomposable), it is the sum of such tensors. There is no 
canonical map : V₁ V₂→V₁×V₂. So there is no simple and unique way 
to associate two vectors (X₁,X₂) to one tensor S.

• The simple fact that we consider interactions means that the measure 
of the state of one of the system shall account for the conditions in 
which the measure is done, so it shall precise the value of the state of 
the other system and of the interactions Z₁,Z₂.



CONCLUSION

• Whenever the variables representing a system meet some mathematical 
conditions one retrieves all the features pictured in the axioms of Quantum 
Physics. So these features do not come from some bizarre properties of the 
World, but from the way we represent it in our models.

• All the previous results are mathematical, proven theorems. They can be 
implemented safely, in precise conditions. They provide a safe way in 
Quantum Physics, beyond what is usually seen as “usual way of 
computation”.

• They provide guidelines in the modelling of systems in any domain (for 
instance in Structural Engineering).

• But these features of the models that we can design are them only option 
that we could choose to follow, or not ?



COMMON MODELS IN THEORETICAL  PHYSICS

• General theories in Physics, aiming at representing a significant 
domain of the natural world, are built more or less according to the 
same lines, be it Newton’s Mechanics or Einstein’s theory of 
gravitation. They acknowledge objects in Nature, with assumed 
properties (forces, momentum, energy…), which transform according 
to First Principles.  All this is represented in Mathematical models 
which are then the base to explain experiments and check the 
theories. So they proceed according to assumptions which are not 
those of Quantum Physics, but also according to a different path.

• I give the example of such a theory, which is mine and covers all the 
known properties, from gravitation to nuclear forces.



THE OBJECTS OF THE THEORY

• The Universe : this is the universal container in which everything stays
• Material bodies : matter in all its form, from elementary particles to galaxies. 

Their main properties : they occupy a precise location in the universe at any time, 
they have a shape (they can be rotated in space).

• Force fields : they have 3 properties :
- they exist everywhere;
- they interact with material bodies, their value change as well as the properties of 

material bodies, notably their motion
- they propagate : their value change from one point to another in the vacuum, 

without interacting with material bodies.
• The observer : he has free will. He can choose the system, its components, the 

time and location of the experiment, the units, and from where he observes and 
measures. 



THE FIRST PRINCIPLES

• Principle of causality : “There is no effect without a cause”. An event A can 
be the cause of an event B, B can be the cause of A, or A and B can be not 
related. Physic is determinist, but the order of the events does not depend 
on the observer.

• Principle of Relativity : “Physical laws do not depend on the observer”.
• Principle of Locality : ”The outcome of any physical process occurring at a 

location depends only on the values of the involved physical quantities at 
this location”.

• Principle of Conservation of Energy : “In any process the balance of energy 
exchanged between the objects of a system is preserved".

• The Principle of Least Action : is a generalization of the Principle of 
conservation of momentum, for a complex system, in any process.



THE GEOMETRY OF THE UNIVERSE

• From the existence of charts, the Universe can be represented by a 4 dimensional 
real manifold. Out of Cosmology, which involves some basic logical assumptions 
(where is the observer ?), we consider a relatively compact area.

• The 4 dimensions are not equivalent : time is not measured as space, one cannot 
travel in time, and the Principle of causality implies the existence of a metric with 
the signature (3,1) or (1,3).

• As a consequence, to each observer is assigned, at any point, an orthonormal 
frame, called a tetrad, with respect to which the motion (transversal and 
rotational) of material bodies is measured. Moreover it defines a 4 dimensional 
density, as well as a 3 dimensional spatial density.

• The standard observer is assumed to be spatially immobile, and it defines a 
standard chart, as well as a set of tetrads which are used for reference. There are 
future oriented and past oriented vectors.



CLIFFORD ALGEBRAS

• On a n dimensional real or complex vector space F endowed with a 
symmetric bilinear form the Clifford algebra  Cl(F, ρ) is a  2ⁿ dimensional 
algebra on the same field, built by adding the internal product  of vectors 
u,v with the property : u.v + v.u =2ρ(u,v). The algebra contains the scalars, 
the vectors of F and the sum of ordered products of vectors. The 
exponential is well defined, transposition is an involution which reverses 
the order in the product of vectors, there is a scalar product.

• The transformations which preserve the scalar product in F are given by the 
adjoint map Adg, defined by : AdgZ = g Z g⁻¹.

• With the tetrad defined by an observer one can define a Clifford bundle 
Pg[Cl(3,1),Ad] with Clifford vectors located at each point.



MOTION OF MATERIAL BODIES

• Material bodies have trajectories p, there is a unique parameter τ, the proper 
time, such that it is the representation of a given path p(τ). 

• Observers follow trajectories with respect to their proper time t. The velocity of a 
material body is V=dq/dt=cε₀+v where v is the spatial speed. The standard 
observer is spatially immobile and for him V has a fixed Lorentz metric -c².

• From which one deduces the relation between the proper time  of a material 
body and the time t at which a standard observer locates the body. 

• Because it is assumed that there is a tetrad attached to a material body, there is 
also a rotation.

• The right representation of the motion of a material body is then by an element 
of the group Spin(3,1):σ=expTr expTw which is the combination of a translation 
Tw and a rotation Tr, defined by 6 real parameters which can be computed from 
the usual quantities.



MECHANICS

• The First Law of Newtonian Mechanics is the law of inertia : the 
momentum, defined as P = mv, is invariant without an external 
intervention, which can be by contact or action at a distance.  From there 
one has the kinetic energy on one hand, and, painstakingly, the torque and 
rotational momentum.

• A simplistic extension to the relativist picture defines a translational 
relativist momentum by P=mU with the proper velocity U=dq/dτ. But, 
because K=<P,P>/m=-mc² there is no simple definition of the kinetic energy, 
and the rotational motion is ignored.

• With a purely QM starting point, Dirac proposed the equation i∂ψ)/∂t=-
i∑γα(∂ψ/∂ξα)+mγ₀ψ with 4 complex matrices γi.γj+γj.γi=2ηijI₄. The variable 
ψ, called spinor, replaces the momentum, and belongs to a vector space 
which is the representation of the Clifford algebra. It accounts for the 
antiparticles and is the basis for the Standard Model.



COMPLEX AND REAL CLIFFORD ALGEBRAS

• There is a morphism  C:Cl(3,1)→Cl( ,4) between the real and complex 
Clifford algebras. With it one can define a real structure on Cl( ,4): one 
element Z of Cl( ,4) can be written : Z=X+iY where X,Y belongs to Cl(3,1), 
however in the tetrad they are then expressed by complex components. 
One can then define complex conjugation and hermitian scalar product.

• The Clifford algebras Cl(3,1) and Cl(1,3) are not isomorphic and do not 
have the same matricial representations. However, the representation of 
Cl( ,4) provides a real matricial representation of both Cl(3,1),Cl(1,3).

• What is important in the Dirac's equation, this is the complexification. The 
matricial representation can be useful but it is not necessary. And we can 
easily introduce the equivalent of the Dirac's spinor in the geometry of 
General Relativity.



SPINOR IN GENERAL RELATIVITY

• The inertial characteristics of a particle are represented by a fixed vector 
ψ₀ Cl( ,4). They are measured by an observer as a vector, representing 
the kinematic state of the particle ψ(t)=Ad{C(s(t))}ψ₀ of the associated 
vector bundle PC=P[Cl( ,4),C(Ad)], where s(t) Spin(3,1) represents the 
geometric state of the particle for the observer.

• The momentum is represented in the 1st jet extension J¹PC of PC. In a 
continuous motion : δψ=dψ/dt and belongs to the Lie algebra 
T₁C(Spin(3,1)). It can easily be extended to deformable solids and to study 
geometric  symmetries of solids.

• The variation of kinetic energy is then given by the Hermitian product   
δK=(1/i)<ψ₀,[δC(s),ψ₀]> with δC(s)=C(s)⁻¹ (dC(s))/dt).



GAUGE FIELD THEORY

• The idea of action at a distance is replaced by the interaction of particles 
with force fields. Its most achieved representation is the gauge field theory, 
which is general.

• The state of a particle is represented by a vector ψ of an associated vector 
bundle P[F,ϑ] with the group U. It changes on the trajectory under the 
action ϑ of the force field, which is represented by a connection. Its action 
on a section of the vector bundle is represented by a covariant derivative 

ψ.
• Because <ψ(τ),ψ(τ)>=<ψ₀,ψ₀> we can take as lagrangian

L=(1/i)<ψ, ψ>=∑TaQa where the charges Qa are real scalars and Ta are 
vectors of a basis of the Lie algebra T₁U.

• The force field is then associated to a Lie group U.



PROPAGATION OF FORCE FIELDS IN THE 
VACUUM
• Force fields propagate at the speed of light c : for any observer the 3 

dimensional hypersurfaces of simultaneous events are the set of points 
where things happen.

• In a gauge field theory the propagation is represented by a tensor : the 2 
form Λ₂(M;T₁U) valued in the Lie algebra of the group U.

• In the vacuum propagation occurs along preferred curves at a speed such 
that the points which are reached after some delay belong to a 2 
dimensional hypersurface : a wave.

• The First Principle of Optics says that "light propagates in straight lines". In 
Einstein’s theory they propagate along geodesics. My assumption is that 
they propagate along Killing curves. They constitute a Lie algebra of 
dimension at most ten on a 4 dimensional manifold, and represent the 
symmetries of the metric, which is the physical part of the Geometry



ISOMETRIES

• Isometries are a subgroup of diffeomorphisms, they preserve the 
metric, and its Lie algebra are the Killing vector fields, V on TM, such 
that their flow f(m)=Φ{V}(τ,m) is an isometry. The condition is that 
the Lie derivative £ along the vector V is null : £Vg=0.

• An isometry f can  be extended to a Clifford bundle isomorphism (f,F) 
on PC. For a propagation curve this is necessarily a spatial rotation 
with the expression F(m)(Z)=AdC(S(m))(Z) where S is a spatial vector 
defined at each point m.

• There is a unique propagation curve going through 2 points, or going 
through a point with a (time) given vector.



GRAVITATION AND THE EM FIELD

• In the Newton’s theory of gravitation the charges are equal to the mass, 
this is experimentally checked.

• The Einstein’s gravitation theory, which is different from General Relativity, 
actually replaces gravitation by the action of inertia in a curved space time.

• But we can easily adjust the gauge field theory to incorporate gravitation in 
the General relativity geometry : the group is the spin group Spin(3,1) and 
the charges are represented by the spinor vector.

• Similarly the electromagnetic field (EM) is represented by the group U(1) 
acting on spinors with the complex structure. There are 3 possible, 
irreducible, non equivalent representations of U(1), which are 
unidimensional and associated to a charge equal to +1,-1, or 0.



NUCLEAR FORCES

• Nuclear forces encompass weak and strong interactions, associated to the 
groups SU(2) and SU(3).

• Over all we have 24 elementary particles, and 24 antiparticles :    
- 3 generations of pairs of leptons : e,ν; leptons of the same flavor have the 

same electroweak charge ;     
- 3 generations of 6 quarks, differentiated by the flavor (u,d) and the color 

(r,g,b). Quarks of the same flavor and generation have the same mass; 
quarks of the same flavor have the same electroweak charge.

- Each particle has an associated anti-particle with the same mass but 
different charges

. These features impose conditions on the structure of the charges, and then 
on the group U



THE UNIFIED MODEL

• The group U is the 16 dimensional real Lie group {u Cl( ,4)::CC(u^}) u=1}. 
The definition holds for both signatures.

• U is a unitary group and (Cl( ,4),ϑ) is a unitary representation of U.
• Its Lie algebra is real but with a basis which is different from the real basis 

of C(Cl(3,1)).
• The standard action is ϑ:U→ (Cl( ,4);Cl( ,4))::ϑ(u)(ψ₀ )=exp(iA)Adu(ψ₀)
• Antiparticles are defined in the contragredient representation, with the 

same group and vector space, but the action is :
Θ’:U→ (Cl( ,4);Cl( ,4))::ϑ’(u)(ψ₀)= exp(-iA)AdCC(u)(ψ₀)
They have the same gravitational charges, opposite EM charge, and identical 
or opposite charges for the other fields.



SYSTEM OF PARTICLES

• With this representation it is possible to write the equations for the 
equilibrium of a system of particles and their field, using the Principle 
of Least Action, variational derivatives and the propagation along 
Killing curves.

• Particles are sources of the field, and the current related to the field 
propagates from an interaction with a particle in spherical waves. A 
particle is seen only once along a definite spatial direction, the action 
of the field decreases roughly as the square of the distance to the 
particle. The metric is defined by the field.



BOSONS

• Continuous process are the rule but discontinuous process can occur in 
collisions or to assure another equilibrium. 

• The connection is always continuous, but not necessarily continuously 
differentiable. If there is a discontinuity of the derivatives there can be a 
right and a left derivative which are not equal. The discontinuity, computed 
as a difference, is a one form which propagates along curves. It is then 
similar to the motion of a particle and leads to the representation of 
bosons by B(τ)=[AdC(S(τ))]ΔA(Y) T₁U such that its Hermitian scalar product 
<B,B>=<ΔA(Y),ΔA(Y)> is constant along the propagation curve.

• Bosons interact with particles, the trajectory is still continuous, but no 
longer continuously differentiable.

• In this picture the "mass" of a boson corresponds to the 6 components of B 
associated to T₁Spin(3,1)



STABLE SYSTEMS

• A system of N particles in the EM field is usually not stable, as well as N 
planets in their gravitational field. The only known stable free hadron, 
composite particles composed of quarks and antiquarks, is the proton with 
3 quarks. However stable systems are ubiquitous : nuclei are extremely 
resilient, as well as atoms. 

• One can show that a system of N particles can be stable if their location 
follow precise symmetries (similar to a crystal). Then the system behaves as 
a single composite particle with a specific charge and their state is 
quantized.

• Systems of composite particles can then be studied by accounting only for 
the relevant charges and fields. 

• Such stable systems follow the mathematical prescriptions of QM, if the 
system is confined to a limited area.



QUESTIONS

• Stable systems, characterized by a highly geometric, symmetric, 
organization, are dominant in Nature. However they do not appear as 
the consequence of the action of the objects in Nature.

• Antiparticles exist and are stable. However the world which is 
accessible to us seems to be composed uniquely of particles.

• The physical world seems to follow very specific requirements, 
according to our Mathematics, be it in QM or Unitary Models. Does 
the Universe comply to the Mathematics, or does Mathematics 
comply with the Universe ? What is the true meaning of our 
mathematical proofs ?



A STRANGE QUESTION

• In “Research Gate”, a very serious scientific internet site, appeared  some months ago a 
question, which has aroused long and passionate discussions : “Do irrational numbers 
exist in Nature ?”. After all the proof of a scientific truth is the production of a material 
evidence. And, materially, it is impossible to produce an irrational number, which has an 
infinite number of digits.

• To answer this question we have to go back to the revolution which happened in 
Mathematics at the beginning of the XX° century. It faced a crisis, which has been solved 
by the distinction between a “motor”, the engine which enables to make proofs 
(mathematical logic) starting from very basic propositions (they are true or false), and 
the formal systems, which are arbitrary collection of definitions, for numbers and sets. 
Altogether they give back the mathematics as we know. So the existence of irrational 
numbers are just a consequence of the introduction of numbers.

• And in our Unitary Model, we have added an “object”, which is fundamental in Relativist 
Physics : the Observer.  Any model, then any “objective” check of a theory, follows the 
prescriptions of the observer.


