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Abstract 
Dynamical system in terms of phase space are defined by the collection of variables needed 
to determine the state of the system at a given time, where sensitive dependence on initial 
conditions is said to be chaotic. The earth’s atmosphere and its climate can be considered a 
chaotic system and therefore it should be treated as a dynamic system. 
Regime behavior can also significantly impact predictability, it occurs when a system 
spends large amounts of time in a localized region of the attractor, followed by relative 
rapid transitions to other regions of the attractor.The goal to predict the sequences of the 
regimes and their durations has not been successful. 
Sensitive dependence on initial conditions of chaotic systems with their largest Lyapunov 
exponent positive impose a practical limit on predictability. It should be noted also that the 
relative weak non linearity of tropical systems allow successful predictions of ENSO and 
Tuna Biomass in the Easthern Pacific and this prediction provides some degree of global 
climate predictions.  
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INTRODUCTION 
There is a general aggreement in the meteorological community that the behavior of the 
atmosphere is chaotic; its sensibility to initial conditions is such that its predictibility 
beyond a certain time range is almost nil. Chaotic behaviors are observed in those systems 
containing a few dynamically relevant variables. Consequently, it has recently been 
suggested that a few variables may be sufficient in order to model the atmosphere´s 
dynamics. This is one of the most relevant results in dynamic systems theory. That is the 
complex behaviour and impredictability of the atmosphere is not necessarily due to the 
presence of a great number of the degrees of freedom,  
Thus Nicolis and Nicolis (1986) have noted that the world´s climate one million years ago 
was limited to one attractor of three dimensions. If this statement is correct we ought to be 
able to simulate the atmosphere with equations having four independent variables. 
The problem would consist in selecting the adequate prediction that should be 
representative of the processes affecting such variables. Not withstanding the difficulty in 
identifying the appropriate variables, the question is to determine whether such complex 
system as the atmosphere is likely to be represented by an attractor of low dimension in 

Adobe Photoshop Elements.lnk  

1

                                                 
1 Sección de Bioclimatología, Centro de Ciencias de la Atmósfera, UNAM. Circuito interior s/n, Ciudad 
Universitaria, Del. Coyoacán, México, D. F. Email: walter@atmosfera.unam.mx . 
2 Departamento de Agrobiología, Posgrado en Ciencias Ambientales, Universidad Autónoma de Tlaxcala, 
Km. 10.5 Autopista San Martín-Tlaxcala, Ixtacuixtla, Tlax., C.P. 90120. Email: juan@cci.uatx.mx

mailto:walter@atmosfera.unam.mx
mailto:juan@cci.uatx.mx


Adobe Photoshop Elements.lnk  

2

which this dimension number could function as a guide in the development of new theories 
of climate. 
The analysis also suggest that climatic variability is the manifestation of chaos dynamics 
described by an attractor of fractal dimensionality. Possibility of applying certain ideas of 
dynamic systems theory to the study of global climate suggest that a strange attractor may 
be characterized by a finite time series obtained from samples of the dynamic system. 
Moreover, the possible existence of a “strange attractor” in the system offers the option and 
possibility of having this information directly from the data, instead of obtaining them 
indirectly from the modeling process. This within the adequate sampling time to draw 
relyable conclusions, Hastings et al (1993). 
The idea of calculating the dimension of a strange attractor would thus have a limited use in 
those systems displaying several degrees of freedom. However an attractor of five to ten 
dimensions in series of ten to a thousand years of information would be consistent with the 
known climate dynamics. 
If this characteristics were found in the system one would expect that such system may be 
described with a very simple model having few degrees of liberty. Recent developments in 
dynamic systems theory show that if a system develops in a deterministic mode, its typical 
trajectory remains in a low dimension of the total available space phases. Moreover, strange 
attractors are now found in which the trajectory remains as a fractal characterized by an 
incomplete dimension. 
New approaches for analyzing time series data are based on positive Lyapunov exponents 
to denote the presence of chaos, Sugihara and May (1990). Positive Lyapunov exponents 
imply noise amplification and the spontaneous production of new macroscopic information 
through the amplification of small fluctuations. Where such behavior can be easily 
confused with deterministic chaos, Hastings et al (1993) 
A nonchaotic system is a noise muffler: the effects of external perturbations decay 
asymptotically to zero over time. Here the amount of time until the effects of a given 
perturbation die out is roughly proportional to the inverse of the Lyapunov value. 
Deterministic chaos refers to nonlineal difference or differential equations without any 
randomness. Deliberate oversimplifications tend to omit any stochastic factors affecting the 
system. Both the system itself and external perturbations contribute to the system’s 
unpredictability, , Sugihara and May (1990). 
Any unpredictability is solely due to random perturbations. 
The use of nonlinear prediction schemes, especially dynamic systems models, will 
necessarily be the required step to take in the future in order to understand and quantify the 
complexity of weather and climate systems including climatic change. 
 
METODOLOGIA 
Predictability of dynamic systems is closely related to the problem of stability. It is derived  
from phase space trajectories of weather and climate variables which evolve on attractors, 
and are accompanied by a growth of errors, which ultimately leads to limits of the 
predictability. 
Local stability properties as the overall stability can have a dramatic physical effect and can 
cause otherwise imperceptible ambient noise to be amplified to macroscopic proportions. 
Local instabilities in phase space cause fluctuations to be temporarily amplified. When a 
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noise is applied, a region of local instability near a fixed point amplifies any external noise, 
carrying the orbit past that fixed point, May (1976), May and Oster (1976). 
We propose the next model in order to analize this: 
 
THE MODEL 
Suppose the climate is given by the multivariables dynamics of m equations. 
dNi/dt = fi ( N1(t), N2(t),…, Nm(t))       1 
Where the rate of change of the ith variable at time t is given by some nonlinear function fi, 
of all the relevant interacting variables. 
The equilibrium, N*, follow from the m algebraic equations obtained by putting all rates of 
change equal to zero. 
Fi (N*1, N*2, …..,N*m ) = 0      2 
Expanding about this equilibrium, for each variable we write. 
Ni(t) = N*i + ni (t) 
Where xi measures the initial small perturbation to the ith variable. 
A linearized approximation is obtained, as: 
ni(t) = ∑ Cij exp (λjt ) 
d ni (t)/dt = ∑ aij xj (t)                          4 
This set of m equations describes the climate dynamics in the neigborhood of the 
equilibrium point. Equivalently, we may write in matrix notation. 
d X (t)/dt =  A X (t)                            5 
Here X is the mx1 column matrix of the ni and A is the mxm “ Jacobian matrix “ whose 
elements aij describe the effect of variable j upon variable i near equilibrium. 
The elements aij depend both on the details of the original equations (1) and on the values 
of this equilibrium climatic parameters, according to: 
aij = ( ∂ fi/ ∂ Nj)*                               6 
The partial derivatives denoting the derivatives of fi keeping all variables except Nj, 
constant, are to be evaluated with all of them having their equilibrium values. 
The m constants λj which caracterize the temporal behavior of the system are the 
eigenvalues of the matrix A. 
( A – λI ) X (t) = 0                                  7 
Here I is the mxm unit matrix. This set of equations posseses a non-trivial solution if and 
only if the determinant vanishes.  
Det I A – λ I I  =  0                                  8 
This is in effect a mth order polynomial equation in λ, and it determines the eigenvalues λ 
of the matrix A. 
They may in general be complex numbers, λ = ζ + I ξ , the real part ζ produces exponential 
growth or decay, and the imaginary part ξ produces sinusoidal oscillation. 
It is clear that the perturbations to the equilibrium values will die away in time if and only 
if, all eigenvalues λ have negative real parts. If any one eigenvalue has a positive real part, 
the exponential factor will grow ever larger as time goes on, and consequently the 
equilibrium is unstable, Ritter et al (1988),Ritter et al( 2004), figure (4). 
The special case of neutral stability is attained if one or more eigenvalues are purely 
imaginary numbers and the rest have negative real parts. 
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An equilibrium configuration in the multiclimatic variable system will have neighborhood 
stability, if and only if, all eigenvalues of the “Jacobian matrix” A, lie in the left-hand of the 
plane of complex numbers. 
It is convenient to define Λ as minus the largest real part of all eigenvalues of the “Jacobian 
matrix”. 
- Λ  =  Real ( λ ) max                                                  9 
The stability criterion then becomes 
Λ > 0                                                           10 
 
Eventually terms of second order and higher become important, and nonlinearities decide 
whether the perturbations will grow until extinctions are produced, or whether the system 
may settle into some limit cycle. 
Likewise even if the equilibrium point is stable to small perturbations, its response to 
severe buffetings is not necessarily known. 
The Lotka-Volterra equations are one particular case of the general formal equations (1). 
Equations of this type (logistic) faithfully characterize the stability propierties of a much 
wider class of models. 
This means we have linear combinations of purely oscillatory factors, which is to say linear 
combinations of cos (wt) and sen (wt), with perturbations leading to undamped pure 
oscillations of frequency w or period 2π /w. 
The direct analogue of Lotka Volterra equation is 
 dHi(t)/dt = Hi(t)(ai - ∑ αij Pj (t)) 
 dPi(t)/dt =  Pi(t)(- bi + ∑βijHj(t))                      11 
With i = 1,2,…., n. All the parameters ai, bi, αij, βij are positive numbers. 
The “Jacobian matrix” which characterizes the stability of this multivariable system is now 
obtained by applying aij to the equations 11. 
It is evidently a 2nx2n matrix, partitioned into four nxn blocks. 
Thus one necessary, but not sufficient, condition for neighborhood stability which must be 
satisfied if all the eigenvalues are to have negative real parts is: 
Trace A < 0                          12 
In the especial case of Trace A = 0, either at least one eigenvalue must lie in the right half 
plane (unstable system), or all eigenvalues must be purely imaginary (neutral stability). 
If A is a mxm matrix, the equation; det I A - λI I = 0, for the eigenvalues λ comes down to 
an mth order polynomial equation. A formal general expression call the Routh-Hurwitz 
criterion, can now be written down, giving constraints on the coefficients, which are 
necessary and sufficient to ensure all eigenvalues lie in the left hanlf complex plane. 
Particularly interesting is the general class of mxm matrices whose rows are cyclic 
permutations of the firs one. The eigenvalues λk, are given by the expressions: 
λk = ∑ Cl exp ( 2πi/m(kl))                                13 
We can approximate the dynamics of the Poincare map by considering only one variable, 
where the slope of the function relating x(t+1) to x(t) is large in magnitude and the discrete 
time logistic function lead to chaotic behavior if the functions are steep enough.The local 
stabilities of the climate evolution are determined by the eigevalues or characteristic 
exponents, aij, of the Jacobian matrix where in general, the rate of exponential growth of an 
infinitesimal vector δx(t) in the n-dimensional phase space is given by the largest of the 
Lyapunov characteristic exponent. Thus the growth rate of the phase space is the growth 
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rate of the Jacobian determinant and given by the sum of all n eigenvalues. The dynamical 
system (1) for n variables can be transformed to a single nonlinear differential equation of 
nth order by eliminating all but one of the variables. This is plausible because for time lags 
larger than the autocorrelation of the time series tends to zero, the data become linearly 
independent. 
The characteristic exponent or eigenvalue L is defined by the Jacobian:L= df/dx/x0   or   
dlnδx/dt. 
Whereas neighborhood is concerned with an isolated singularity, global analysis is 
concerned with the behavior of the system over the entire space. 
We can classify singularities in terms of the dynamical behavior of the system near the 
singularity. Based on the configuration of the two eigenvalues, we can tell which type of 
system applies to a  particular system of differential equations. 
If one eigenvalue is positive ( real part) and the other negative, we have a saddle point. 
Assumed zero imaginary parts for the eigenvalues in the case in which both eigenvalues 
have nonzero imaginary parts. With nonzero imaginary parts we are dealing with an 
oscillatory system, If both real parts are positive, we have a stable focus. If both real parts 
are positive, we have unstable focus. If both real parts are zero, we have centers of neutrally 
stable oscillations, Vandermeer (1972). 
 
RESULTS AND CONCLUSIONS 
The tuna fish population of the Eastern Pacific Ocean (EPO), shows a high sensitivity to 
ocean temperatures. This fact has been used as a biological index to detect the El Niño 
phenomenon, Arntz et al (1996), (Suarez et al 2002). 
Tuna biomass reacts to El Niño by a drastic population reduction and show recovery. 
Strong Enso events have a clear influence on tuna populations. In other words El Niño 
causes an initial reduction in tuna biomass; however once the El Niño is gone the system 
goes through a rejuvenation process increasing considerably the population biomass ( 
Suarez et al (2004), Ritter et al.(in press). 
The historic tuna biomass in the EPO and the ENSO phenomenon may be easily simulated 
and forecasted by applying statistical methods to time series, to models such as the ARIMA 
e.g. Suarez et al (2004),(fig. 2), or dynamic systems methodologies such as neuronal 
networks in space phases that clearly show a closed toroidal diagram (fig., 3). This means 
that variables are acting in the presence of periodicities differing only in their frequencies. 
These methodologies have made possible to issue predictions six months in advance of the 
event during this year, Suarez et al (2004). These predictions have been possible by the 
presence of warm waters observed during the last decade which suggests a linearity effect 
in the system, Chaves et al. (2003), Trenbert (1990),Cobb et al. (2003), Graham(1995). 
Predicting how ENSO will change under continued greenhouse forcing, yield a broad range 
of possible results, where the mean state of the tropical Pacific climate system is know to 
vary over decadal timescales. 
It is possible that with the beginning of a cool phase decade, detected by an increasing 
amount of anchovets and a drop in the sardine population, this characteristic could be lost 
and result in nonlinear properties with less forecast possibilities and a greater presence of 
extreme events forecast. 
The recent upward trends in global temperature have been caused by an active tropical 
hydrologic cycle driven by increasing tropical ocean temperatures, suggesting that an 



enhanced tropical hydrologic cycle are similar in importance to the early manifestations of 
the climatic response to increasing concentrations of greenhouse gases,Graham (1995). 
The diagram in figure 4,Ritter et al. (in press) derived from the manifestation of the logistic 
model allows to determine the eigenvalues of vectors in the space phases. The relevance of 
this diagram is the correspondence of the strongest El Niño events occurs when the tuna 
biomass vectors invade the chaotic zone which is linked to the maximum eigenvalue of the 
system, table (1). 
Global temperatures anomalies in the graph (fig. 5) show multiple attractors, as expected 
from complex system´s manifestations, it is possible that these attractors are shown in 
increasing mode due to increasing emissions of CO2 at the global scale. The temperature 
curls are also observed in the tuna biomass in the space phases in case of an El Niño 
condition. However transition between attractors, remain a mystery since it has not been 
possible up to now to find a clear explanation of its manifestation. 
Application of ARIMA statistical process to temperature data (fig. 6) for prediction 
purposes with the tuna biomass periodicities, shows a clear trend for cooler temperatures in 
the future, in aggreement with those researchers that expected a decade of cooler oceanic 
temperatures,Chaves et al (2003), Graham (1995), Trenberth (1990), Cobb et al (2003), 
This prognosis is expected to be close to reality if the system tends to conserve its linearity. 
Finally, of one thing we are certain and that is that we are heading toward a world hiding 
many surprising situations more difficult to predict. Sugihara and May(1990). 

.  
Figure 1. The Eastern Pacific Ocean and the mean captures during 1979-1993 (taken 
fromIATTC, 1994) 
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Figure 2 . Average annual biomass of yellowfin tuna fish from the Eastern Pacific Ocean, 
as (o) observed and (-) estimated by the ARIMA model (0,0,0,1,1,0)7. 

 
 
Figure 3. Three-dimensional  phase space graph of the trimestral biomass of the yellowfin 
tuna fish from the Eastern Pacific Ocean, as estimated by the neuronal network model. 
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  I   and    V     :Stable oscilatory 
   II  and    VI    :Unstable oscilatory 
  III and    VII   :Unstable asintotic 
  IV and    VIII  :Stable asintotic 
 

    ç 
O  : Oscilatory 
 A :  Asintotic 

 
figure 4 Graphic method modified by Ritter et al (2004) in order to calculate phase space 
eigenvalues as well as the system’s behavioural patterns divided in a: oscillatory, 
asymptotic, stable or unstable and chaotic area. 
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Figure. 5 Global temperature anomalies space phases showing in separate form its multiple 
attractors and then integration. 
 
 

 
Figure 6 Simulation and prediction of global temperature anomalies using ARIMA 
statistical method. 
 

Adobe Photoshop Elements.lnk  

9



Adobe Photoshop Elements.lnk  

10

Aknowledgments 
We would like to express our  gratitude to  Ing. Sabina Garfias Mijangos, and Alfonso 
Salas Cruz for their support during the process of this document. 
  
REFERENCES 
Arntz, W. E. And Y. E. Fahrbach (1996) El Niño, experimento climático de la naturaleza. 
F. C. E., México, 312p. 
Chaves Francisco P., John Ryan, Salvador E. Lluch-Cota, Miguel Hinquen C.,(2003) From 
Anchovies to Sardines and Back: Multidecadal Change in the Pacific Ocean. Science Vol. 
299/10 January 2003. PP 217-221. 
Coob Kim M., Christoper D. Charles, Hal Cheng, & R. Lawrence Edwars (2003) El 
Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 
Vol. 424/17 july 2003, pp. 271-276. 
Graham, N. E.,(1995) Simulation of recent global temperature trends. Science, 267, 666-
671 . 
Hastings A. M., C.L., Horn,  S. Ellner, P. Turchin and H.C.J. Godfray (1993) Chaos in 
ecology: Is Mother Nature a strange attractor?. Ann. Rev. Ecol. Syst. 24(1993), 1-33. 
May R. M.(1976) Simple mathematical models with very complicated dynamics, Nature 
261, 450-467. 
May R. M.,and G.F. Oster(1976) Bifurcations and dynamic complexity in simple 
ecological models, Amer. Natur. 110(1976), 573-599. 
Nicolis, C. and Nicolis, G. (1986) Irreversible Phenomena and Dynamical Systems 
Analysis in Geoscience, Reidel, Dordrecht. 
Ritter O. W., A. Noguez  y I. Rosas (1988) Evaluation of agriculture stability production 
from climatic indices, for some Mexican localities. Geofisica Internacional, 7 (2), 263-278 
(in Spanish) 
Ritter O. W., Jauregui O. E., Guzman R. S., Estrada B. A., Muñoz N. H., Suarez S. J. and 
Corona V. MC.(2004) Ecological and agricultural productivity indices and their dynamics 
in a sub-humid/semi-arid region from Central México. Journal of Arid Environments 59, 
753-769. 
Ritter O. W., Suarez S. J., Gay G.C., Jauregui O. E.(2005) Impact of ENSO and the 
optimum use of yellowfin tuna in the Easthern Pacific Ocean Region., World Resources 
Review (In press). 
Sugihara G., and R. M. May (1990) Nonlinear forecasting as a way of distinguishing chaos 
from measurement error in time series, Nature 344(1990), 734-741. 
Trenberth, K. E., (1990) Recent observed interdecadal climate changes in the Northern 
Hemisphere. Bull. Amer. Meteor. Soc., 71, 988-993. 
Vandermeer J. H. (1972) Elementary mathematical ecology. John Wiley. New York. 
 
 
 
 
 
 
 


	Abstract 
	INTRODUCTION 
	METODOLOGIA 
	THE MODEL 
	RESULTS AND CONCLUSIONS 
	REFERENCES 

