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Abstract: In this paper, we consider the notions of similarity, typicality and prototype for numerical data, i.e. 
vectorial data belonging to Rp. We study the relationships between these notions and examine various 
possibilities to define similarity, to deduce typicality from similarity and prototypes from typicality, underlining 
the semantics and the interpretation of each considered method. 
 

1. Introduction 
 

The term prototype designs an element chosen to represent a group of data: it is an 
individual that characterises the group, summarises it and highlights its most important 
elements, facilitating its interpretation by the user. The prototype relies on a notion of 
typicality that models the fact that all members of a group are not equally representative or 
characteristic of it.  Typicality has been studied at a cognitive and psychological level first by 
Rosch and Mervis1; they showed that the typicality of an element for a given category 
depends on two factors: its resemblance to the other members of the category and its 
differences to the members of other categories. The associated prototype then takes into 
account the common points of the group members, but also their distinctive features as 
compared to other categories. Building a prototype through typicality involves different ways 
of comparing data points: it depends both on similarity and dissimilarity measures.  

In this paper, we consider these notions of comparison measures, typicality and prototype 
in the case of numerical data, i.e. vectorial data belonging to Rp, and we examine their 
relationships. We first consider various possibilities for the definition of dissimilarity and 
resemblance, highlighting their associated semantics. We then exploit them to define 
typicality degrees and fuzzy prototypes according to cognitive science principles. Lastly we 
consider other definitions of prototypes in the form of weighted means and interpret the 
weighting coefficients in the context of similarity and typicality. We show that most of them 
are to be interpreted as resemblance measures following local normalisation processes, 
suggesting ways to improve the typicality based prototype construction methods.  

 
2. Comparison measures for numerical data 

 
We first consider various possibilities for the definition of comparison measures for 

numerical data, i.e. resemblance and dissimilarity measures: usually dissimilarity is based on 
a distance function that is normalised in order to get a value in the interval [0, 1]; on the other 
hand, similarity is usually derived from scalar products or from dissimilarity measures 
through decreasing functions. In this section, we describe these methods and underline their 
semantics and properties that can enable a user to select the most appropriate. 

 
2.1 Dissimilarity measures 

 
Distances: A classical way to define a dissimilarity measure consists in deriving it from a 
distance. Several definitions can be considered for this distance, the most common ones are 
described in table 1, their semantics and properties are discussed hereafter. 

                                                 
1 ROSCH E. and MERVIS C., (1975), Family resemblance: studies of the internal structure of categories, 
p. 573-605, Cognitive psychology, Vol. 7. 
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Table 1: Most commonly used distances and scalar products. p denotes the data dimension, )( iα  a vector 
of positive weighting coefficients and Σ the covariance matrix of the data.  
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As compared to the Euclidian distance, its weighted variant offers the possibility to 

control the relative influence of the attributes and to rule their importance in the comparison. 
It is equivalent to performing a linear transformation of the data before using a Euclidian 
distance: each attribute is multiplied by the factor iα . Thus it allows to normalise the 
attributes, which is indeed necessary when their values cover different scales: otherwise 
attributes taking high values dominate, the others having no influence in the comparison.  

One can consider more general linear transformations by defining, for any symmetric 
definite positive matrix A, ),()()(),( 2/12/1 yAxAdyxAyxyxd T

A =−−= . The Mahalanobis 
distance belongs to this framework and takes as matrix A the inverse of the data covariance: it 
deduces the transformation from the statistical distribution of the data. If the covariance 
matrix is diagonal, the Mahalanobis distance corresponds to a weighted Euclidian distance 
with weights being the inverse of the standard deviation of each attribute; this is equivalent to 
normalising the attributes so that they all have mean 0 and variance 1. With a general 

matrix, the Mahalanobis distance also takes into account correlations between attributes. Σ
The Euclidian distance is a specific case of the two previous distances: it is a weighted 

distance with all coefficients equal 1, and a Mahalanobis distance with an identity covariance 
matrix. The level lines for the Euclidian distance are circles, in the weighted Euclidian case, 
they are ellipses parallel to the axes, and for the Mahalanobis distance, general ellipses. The 
selection of the most appropriate distance depends on the considered data, the statistical 
distribution of their attributes, and the importance the user wants to give to each attribute. 

Besides, the Euclidian distance also is a Minkowski distance with . Other often 
considered cases are the Manhattan distance (

2=m
1=m ) that has the advantage of being more 

robust than the Euclidian distance and the Chebychev distance ( ) that can also be 
written

∞→m

iidi yxyxd −= =∞ ..1max),( . One of the advantages of the Euclidian distance is to be a 

derivable function.  
 
Normalisation: After a distance has been chosen depending on the distribution of the 

attributes and the desired properties (robustness, derivability e.g.), it must be normalised to 
get a value in [0, 1] to define a dissimilarity2. Denoting d the distance to normalise, and 

its minimal and maximal values respectively, the simplest normalisation method consists 
in using the linear transformation 

md

Md

                                                 
2 BOUCHON-MEUNIER B., RIFQI M. And BOTHOREL S., (1996), Towards general measures of comparison 
of objects, p. 143-153, Fuzzy sets and systems, vol. 84(2). 
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Such a normalisation guarantees values between 0 and 1, these limits being obtained only for 
the extreme cases mdd = and . The drawback of this approach is its sensitivity to 
outliers: the maximal distance can correspond to an aberrant point and be very large, 
disturbing the normalisation process.  

Mdd =

Therefore one can use another transformation that overcomes this problem and offers 
additional properties, by defining the parameter ),( MmZ =  and  
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Here, the extreme values are user-defined and not extracted from the data, which overcomes 
the data sensitivity problem. Moreover, this transformation provides a saturation property: it 
guarantees value 0 for any  and value 1 for any . Thus, the parameter can be 
interpreted as a tolerance threshold: any distance lower than  leads to a zero dissimilarity, 
which means that distinct points can be considered as identical. The parameter 

md ≤ Md ≥ m
m

M corresponds 
to the distance from which two data points are to be considered as totally dissimilar: the two 
points at maximal distance one from another are not the only ones to have dissimilarity 1; this 
is in particular interesting in the case of datasets containing aberrant points. 

Thus normalisation makes it possible to modify the semantics of a dissimilarity through 
the definition of tolerance thresholds. We show further in section 4 how the normalisation 
parameters, which can be locally and not globally defined, can influence the semantics. 

 
2.2 Similarity measures 

 
Similarity measures have been formalised in the case of fuzzy data2, i.e. data whose 

attributes are not numerical values but fuzzy subsets: this formal framework distinguishes 
between resemblance, satisfiability and inclusion, depending on the relationships between the 
two objects to be compared. In our case, none of the points is to be considered as a reference 
to which the other should be compared, they both have the same status; thus we consider 
resemblance measures. We will talk of similarity or resemblance without distinction.  

We discuss here the two main approaches existing to define resemblance measures for 
numerical data: they can be deduced from scalar products, in particular kernel functions, or 
derived from dissimilarity measures through decreasing functions.  

 
Scalar products: Scalar products can be written ),cos(, yxyxyx = and take high 

values when the points are identical: they have the semantics of similarity, but must be 
normalised to get values in the interval [0, 1]. Table 1 mentions the most common scalar 
products, for which the previous discussion about attribute transformation holds. 

Other semantically rich scalar products are defined in the kernel function framework, first 
introduced by Vapnik3 and exploited in kernel learning methods (see e.g. Schölkopf and 
Smola4). Indeed, they are associated to implicit nonlinear transformations of the data that 
enriches their representation: the polynomial kernel function for example is defined as  
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In the case of 2D data for instance, ),( 21 xxx=  and ),( 21 yyy= , for 2=γ and one has 1=l
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3 VAPNIK V., (1995), The nature of statistical learning theory, New York: Springer. 
4 SCHÖLKOPF B. and SMOLA A., (2002), Learning with kernels, MIT Press 
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scalar product in a 5-dimensional space that takes into account quadratic correlations between 
the initial attributes. More generally, the polynomial kernel implicitly enriches the data with 
components defined as the monomials of degree inferior or equal toγ of the initial attributes. 
Thus it involves nonlinear correlations between the attributes without increasing the data 
dimensionality or the computational cost: the scalar product between the enriched data is 
computed using only their initial representation. Likewise the Gaussian function 
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corresponds to an infinite dimensional space for which the associated transformation function 
cannot be made explicit. Thus whereas the scalar products presented in table 1 can be seen as 
applying linear transformation of the data before comparing them, kernel functions offer the 
possibility to perform nonlinear transformations without increasing the computational costs. 
Therefore they constitute an interesting approach to the definition of resemblance measures.  
 

Decreasing functions of dissimilarity: Besides, similarity measures can be derived from 
dissimilarity measures or distances, for instance as their complement to 1  

)(1 dZηρ −=  (5)
where Zη  is the normalisation function of eq. (2). It is to be noted that the normalisation 
parameters may be different from those defined for the dissimilarity itself: one can use as 
resemblance )(1

1
dZηρ −= and as dissimilarity )(

2
dZηδ = with 21 ZZ ≠ , leading to different 

threshold effects. One then considers that two points are totally dissimilar at a distance which 
differs from the distance at which their resemblance is null. We illustrate in section 3 the 
usefulness of such independent definitions. 

One can also use smoother decreasing functions than this linear transformation to 
transform a dissimilarity measure to a resemblance; they provide means to influence the 
semantics of the resemblance. Table 2 presents three examples: the Laplace function, the 
generalised Gaussian function that corresponds to a Gaussian for 2=γ , and the sigmoid or 
Fermi-Dirac5 function. The latter requires a specific normalisation as indicated in the table 
and a saturation transformation  to lead to interesting behaviours. These functions 
are illustrated for various values of their parameters on figures 1, 2 and 3 where the input 
variable represents a distance d(x,y) varying in the interval [0,1]. The Laplace and Gaussian 
functions are normalised using the function 

)0,max( FDf

Zη  (cf. eq. (2)) with )1(fm = and , the 
sigmoid function is normalised using its own procedure. 

)0(fM =

The first remark is that the global behaviour of the three families is quite similar, i.e. they 
offer the same variations, possibly for different parameters values. Graphs 1a, 2a and 3a show 
that in all 3 cases the parameter γ determines the decrease speed around  and 
consequently the width of the plateaux for d lower or higher than the threshold 0.5. This 
corresponds to the discrimination power notion introduced by Rifqi et al.

5.0=d

5: for high γ values, 
the Gaussian and Laplace curves have a steep decrease around 0.5, which implies that small 
differences in the input produce high differences in the output. On the contrary, the curve is 
very flat for small d, meaning that the function does not discriminate input values: different 
distances will produce approximately the same output. The same behaviour can be observed 
for the Fermi-Dirac functions for smallγ values (see fig. 3a). Whenγ increases, the sigmoid 
function tends to a linear curve, whose discrimination power is equally spread on the whole 

                                                 
5 RIFQI M., BERGER V. and  BOUCHON-MEUNIER B., (2000), Discrimination power of measures of 
comparison, p. 189-196, Fuzzy sets and systems, Vol. 110. 



Table 2: Possible decreasing functions to define resemblance measures from dissimilarity measures. 
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Figure 1: Laplace function after normalisation by the function Zη , with )1(lfm = and for 

various 

)0(lfM =
γ values: (a) 1,5.0 >= γσ , (b) 1,5.0 ≤= γσ , (c) 2.0=σ . 

   
(a) (b) (c) 

Figure 2: Generalised Gaussian function after normalisation by the function Zη , with   

and for various)1(ggfm = )0(ggfM = γ values: (a) 1,5.0 >= γσ , (b) 1,5.0 ≤= γσ , (c) 2.0=σ  

  

(a) (b)

Figure 3: Fermi-Dirac function for several γ values: (a) 5.0=σ , (b) 2.0=σ  

interval [0,1]. For the Gaussian and Laplace functions, one can observe a different 
comportment for 1<γ , namely a high discrimination power for small input values (see fig. 1b 
and 2b): this behaviour is very strict as it implies that a distance, even very small, may 
decrease the resemblance value to a large extent. Thus theγ parameter enables the user to 
determine precisely the distribution of the discrimination power of the resemblance measure.  

As for parameterσ , figures 1c, 2c and 3b show that it determines the position of the point 
with maximal discrimination power, i.e. the point where the derivative of the function is 



maximal (the latter is precisely located at σ=d for the Laplace and Fermi-Dirac functions, a 
dependence to γ  still exists in the Gaussian case, for which it is located at ). 
Therefore it also determines the threshold from which the output value is very small or zero.  

σγγ γ)/)1(( −

Thus these functions make it possible to turn a dissimilarity measure to a similarity one, 
providing the user with parameters to control precisely its behaviour. It can be noted that the 
obtained functions can be reversed again to get dissimilarity measures: considering for 
instance leads to a smoother normalisation than the linear one (eq. (2)) and 
allows to determine the discrimination power of the dissimilarity measure. 

)(1 dfD gg−=

 
3. Typicality degrees and fuzzy prototypes 

 
The previous section discussed various possibilities for comparison functions, underlining 

their respective semantics: some modify the data representation, explicitly or not, in a linear 
or nonlinear way, others offer a fine-tuned control of the measure behaviour, in particular its 
discrimination power. In this section we illustrate the use of resemblance and dissimilarity for 
the definition of typicality degrees and fuzzy prototypes and underline the relationships 
between these notions. 
 

Typicality degrees: Cognitive science works, initiated by Rosch and Mervis1, have 
shown that all members of a category are not equivalent: some are more representative, or 
typical, than others. They showed further that a point is typical if it is similar to the other 
members of the group and distinct from members of other categories. This principle can be 
illustrated with the mammal category: whereas a dog can be considered as a typical example, 
a platypus is atypical because it does not resemble enough other mammals and a whale is 
atypical because it is not distinct enough from members of the fish category. This implies that 
typicality cannot be reduced to a resemblance notion: it is distinct from a simple similarity to 
the group centre, it also involves a dissimilarity notion. 

Rifqi6 proposed a method to implements these principles: it computes, for each point, its 
internal resemblance, i.e. its average resemblance to the other points of the group, and its 
external dissimilarity, i.e. its average dissimilarity to points belonging to other categories. The 
typicality degree is then the aggregation of these two quantities.  

Formally, let’s denote  the dataset, , { nixX i ..1, == } rC cr ..1= the categories, ρ andδ a 
resemblance and a dissimilarity measure respectively, as defined in the previous section. Then 
for point and categoryix r , the internal resemblance , the external dissimilarity 

and the typicality degree are defined as  
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where ϕ is an aggregation operator, such as the weighted mean or the symmetric sum e.g..  
 

Fuzzy prototypes: The prototype is then defined as the aggregation of the most typical 
data: it highlights the common points of the category members but also their discriminative 
features. Several aggregation methods exist: Rifqi6 considers the case of fuzzy data, the 
aggregation thus applies to fuzzy subsets and can be performed using classical fuzzy 
aggregation operators. In the case of numerical data, a solution may consist in defining the 

                                                 
6 RIFQI M., (1996), Constructing prototypes from large databases, p.301-306, Proc. of IPMU’96. 



prototype as a weighted mean, using the typicality degrees as weighting coefficients, 
as ( ) ∑∑=

i iri iirr txtw : it indeed constitutes a way to aggregate numerical values. Yet it 
seems that a prototype should not be a single numerical value, but could be better modelled as 
a fuzzy set, even in the case of numerical values: prototypes correspond to imprecise notions 
that have vague boundaries; fuzzy subsets offer the flexibility to model these properties. 
Therefore Lesot et al.7 proposed to define the prototype of numerical data as the fuzzy set 
whose kernel contains points having typicality higher than a threshold (e.g. 0.9), and its 
support contains points with typicality higher than a second, smaller, threshold (e.g. 0.7). 
 

Numerical example: We illustrate this methodology and the criteria choice on the iris 
database that contains the length and width of petals and sepals for 150 flowers belonging to 
three categories, virginica, setosa and versicolor. We consider two attributes (sepal and petal 
widths) to allow a graphical representation and we build a prototype for each category.  

We simply choose to base the comparison on a Euclidean distance as attributes have a 
similar value scale. The distance is then normalised using the function of eq. (2) to define 
resemblance and dissimilarity, with two different thresholds: the resemblance only takes into 
account distances at an intra-group level, thus an interesting distance reference is the maximal 
intra-group distance, i.e. the maximal diameter of the groups to be characterised. The 
dissimilarity is taken into account at an inter-group level, thus an interesting distance 
reference is the diameter of the whole dataset; the threshold is defined as the data half-
diameter so as to avoid that a single point couple have a dissimilarity of 1. Lastly we apply a 
generalised Gaussian (eq. (7)) to soften the decrease of dissimilarity and to define the 
similarity from the normalised distance, considering 

)),(((1),()),(((),(
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where and)))((max,0(1 rr CdiamZ = ))(21,0(2 XdiamZ = ; the parameters of the Gaussian are 

5.0=σ and 2=γ . The typicality degree is then defined using the weighted mean aggregator, 
as .  )(4.0)(6.0 iririr xDxRt +=

Figure 4 shows the level lines of the membership functions corresponding to the 
prototypes of the three categories. They are approximately centred on the group averages but 
are not spherical and their limits take into account the external dissimilarity: it can be seen 
that the two upper groups have a bigger spread in the x-direction as in the y-direction because 
the latter shows more overlapping between the groups. The lowest group is also clearly 
influenced by the two others that restrain it in the y-direction. Among the points having low 
membership to the prototypes, two categories can be made: some are located in overlapping 
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Fig. 4: Level lines of the membership functions for the fuzzy prototypes characterising the iris categories. 
                                                 
7 LESOT M.-J., MOUILLET L. and BOUCHON-MEUNIER B., (2004), Fuzzy prototypes based on typicality 
degrees, 8th Fuzzy Days, Dortmund, Germany 



areas between categories, thus are rejected as having a too small external dissimilarity, others 
are too far away from the other members of the category, and thus have a too low internal 
resemblance.  These prototypes incorporate information both about the common points and 
the distinctive features of the categories, and provide richer information than a numerical 
value due to their fuzzy properties. 

 
4. Weighted means interpretation 

 
In the previous section we considered a definition of typicality degrees and fuzzy 

prototypes according to cognitive principles. We discuss here other definitions of prototypes, 
in the form of weighted means, and compare the weighting coefficients to the notions of 
typicality and resemblance. We show that most of them correspond to internal resemblance 
with local normalisation but do not take into account an external dissimilarity component.  

 
Average: As a reference, we consider the case of the arithmetic mean that is defined as 
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Such weights give the same influence to all points of the group and do not distinguish more or 
less representative points; they cannot be interpreted as typicality degrees. The second 
formulation above highlights the fact that the arithmetic mean minimises an internal 
dissimilarity, i.e. it is defined as the point which maximises an internal resemblance.  

It is to be noted that the median is equivalent to the mean: it has the same definition, 
simply replacing the Euclidian distance by the Manhattan one, which makes it more robust.  
 

Most Typical Value: In order to build more significant representatives, Friedman et al.8 
define the Most Typical Value (MTV), as the fixed point of the equation 
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where is the number of occurrences of the value , im ix λ  is a user-defined parameter and 
are decreasing functions that define local contexts and can differ for each point; they can 

for instance be the functions described in table 2. The resulting group representative can be 
seen as a weighted mean computed in an iterative process, where the weights are  

if

if ri Cx ∈  
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Thus the influence of a point on a representative depends on its frequency and on its distance 
to the current estimate of the centre. The term |)(| sxf ii −  can be interpreted as an internal 
resemblance: it is equivalent to the quantity defined in eq. (9), replacing the average 
similarity to the members of the group by the similarity to some average of the group. 

)( ir xR

The other element involved in the definition of  does not correspond to an external irt

                                                 
8 FRIEDMAN M., MING M., and KANDEL A., (1995), On the theory of typicality, p. 127-143, International 
Journal of Uncertainty and Knowledge-Based Systems, Vol. 3. 



dissimilarity, it is the frequency of the data points to the powerλ : it models the expectation 
that a significant representative of the group should be all the closer to a point as the latter is 
frequent. In the typicality definition of eq. (10), each occurrence of a point is handled 
independently, which is equivalent to considering only the specific case 1=λ .  

The MTV can be interpreted as a more relevant representative than the arithmetic mean 
relying on a notion of internal resemblance that takes into account the data frequency. 

 
Fuzzy c-means: The fuzzy c-means is a clustering algorithm that can also be seen as 

computing a weighted average in an iterative process. The coefficients are  where m is a 
user-defined parameter, and 
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with )1/(2 −= mγ and ,  the current estimates of the group representatives. An 
important difference to the previous coefficients is the fact that these weights never equal 0: a 
point influences the representatives of all categories and not only a single one. This provides 
the algorithm with interesting properties

rw cr ..1=

9 but also leads to difficulties for the coefficient 
interpretation: if for instance two categories are considered, all points located on the median 
between the two centres have weight 0.5 for both groups, independently on their actual 
distance to the centres. This behaviour implies that the coefficients do not have the semantics 
of typicality degrees nor of a resemblance measure, from both of which it is expected that 
they decrease with the overall distance. In fact these coefficients are interpreted as 
membership degrees, indicating the degree with which a data point belongs to each group, or 
sharing coefficients, indicating the extent to which it is shared between the groups.  

The second formulation above indicates that  is a Laplace transformation (cf. eq. (6)) 
with 

iru
)1/(2 −= mγ applied to the distance to the centre current estimation, which a priori gives 

it the interpretation of an internal resemblance. The difference comes from the definition of σ  
that normalises the distances: it is not defined globally, but varies for each point and each 
group, defined by [ 1

/1
−

≠∑ −=
rs sii wx γγσ ] . Thus for a point , ix ri wx −  is compared to its 

distance to the centres of other groups. This relative distance indicates the extent to which  
is shared between the groups.  It modifies the interpretation of the Laplace function as a 
similarity measure, which underlines the influence of normalisation on the global semantics. 

ix

We commented here on coefficients , whereas the group representatives are based on 
their value to the power of m. This transformation does not modify the semantics, it can be 
considered as an optimisation trick that distinguishes the fuzzy c-means from Gaussian 
mixture models and the EM algorithm

riu

10. 
 
Possibilistic c-means: The possibilistic c-means11 is another clustering algorithm, it relies 

on weights that depend on parameters rη  indicating the diameter of each group: the latter can 
be deduced from a priori knowledge or determined using the fuzzy c-means in a preliminary 
step11. The weights are then defined as to the power m, where irt
                                                 
9 KLAWONN F., (2005), Understanding the membership degrees in fuzzy clustering, Proc. of the 29th Annual 
GfKl Conference, Springer-Verlag. 
10 DÖRING C., BORGELT C. and KRUSE R., (2004), Fuzzy clustering of quantitative and qualitative data, 
p. 84-89, Proc. of the Conf. of the North American Fuzzy Information Processing Society. 
11 KRISHNAPURAM R. and KELLER J., (1993), A possibilistic approach to clustering, p. 98-110, IEEE 
Transactions on fuzzy systems, Vol. 1. 
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They correspond to a Laplace transformation of a distance with exponent )1/(2 −= mγ and a 
locally defined parameterσ . Contrary to the fuzzy c-means, the normalisation does not vary 
for each data point, but only depends on the group to be characterised and equals the diameter 
of the group. In the experiment with the iris dataset (cf. section 3) we considered a similar 
approach but we used a single parameter, the maximal value of these diameters, and not a 
different value for each category: the resemblance measure used here is more refined.  

It is to be noted that, as in the fuzzy c-means case, these coefficients a priori never take 
zero values. Yet, for points close to other groups, ri wx −  is higher than rη , thus takes 
small values or equals 0: in practical cases, points significantly contribute to a single centre. 

irt

 
Fuzzy possibilistic fuzzy c-means: Pal et al.12 define a clustering algorithm that 

combines the characteristics of both fuzzy and possibilistic c-means: it relies on two weight 
distributions, one being identical to the fuzzy c-means distribution, the other being defined as  
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to the power m. It is close to the quantity considered by the fuzzy c-means, but it differs by 
the norm same for all points in a group and is defined 

by

alisation: the latter is the 
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: this sum is over data points and not cluster centres. Thus it can be 

seen as an indirect measure of the spread of the cluster, i.e. it is more similar to a diameter. 
Thus this distribution is again to be interpreted as an internal resemblance which takes into 
account a local normalisation. 
 

5. Conclusion 
 

We considered the problem of similarity, typicality and fuzzy prototypes in the case of 
numerical data. We mentioned some of the various possibilities that exist to compare vectorial 
data and provide users with much more flexibility than the simple Euclidian distance. We 
illustrated the use of these measures for the definition of typicality degrees corresponding to 
psychological and cognitive studies. Lastly we examined some weight distributions used to 
define data representatives and compared them with the notions of internal resemblance and 
typicality. We showed that a highly influential criterion is the distance normalisation, which 
determines the semantics of the relative distance and thus that of the overall transformation. 

This comparison highlights the fact that both approaches could benefit one from another: 
the existing weights suggest ways to enrich internal resemblances and possibly external 
dissimilarities, involving the data frequency for instance or using local normalisations such as 
the group diameters for each category. Reciprocally, one could perform clustering taking into 
account an external dissimilarity component and defining cluster centres that underline the 
distinctive features of clusters.  

 
 

12 PAL N., PAL K. and BEZDEK J., (1997), A mixed c-means clustering model, p. 11-21, Proc. of the IEEE Int. 
Conf. On Fuzzy Systems. 


