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Résumé : Le rendez-vous à dîner de Jill et Jack offre un cadre romantique à l’application de 
l’expérience de l’entonnoir de Deming. Deming a utilisé cette expérience pour montrer 
certaines formes de dérive des processus; les chercheurs en qualité et praticiens l’utilisent 
pour mettre en avant les dysfonctionnements provenant de l’absence de l’utilisation de 
diagrammes de Maîtrise Statistique des Processus (MSP). Emaillé par des exemples réels de 
dérives, ce papier présente un modèle de dynamique des systèmes de l’expérience de 
l’entonnoir, et montre des images multidimensionnelles de probabilité de localisation et de 
distributions inégalitaires de Theil. Digest®, un logiciel expérimental de dynamique des 
systèmes, permet d’analyser l’expérience d’un point de vue causal, au lieu de regarder 
simplement des mesures de l’entropie et des diagrammes de MSP dont les résultats peuvent 
provenir de coïncidences hasardeuses. Pour regarder sous le capot, si l’on peut s’exprimer 
ainsi, Digest® aide à expliquer exactement, dans le système de l’expérience de l’entonnoir, 
comment les relations de boucles de causalité circulaires entre variables produisent des 
dynamiques d’hypothèses erronées, en raison des multiples boucles de rétroaction qui 
déterminent le comportement du système. Combiner la MSP à la dynamique des systèmes, et 
vice et versa, peut aider à détecter, à expliquer et à éviter les dérives des véritables processus 
que les managers doivent gérer. 
 
Abstract—The dinner date (rendezvous) of Jill and Jack provides the romantic context where Deming’s 
funnel experiment applies. Deming used this experiment to show pervasive forms of tampering and qual-
ity researchers and practitioners use it to show the dysfunctional effects of not using statistical process 
control (SPC) charts. Interspersed with real-world tampering examples, this paper presents a system dy-
namics model of the funnel experiment and shows multi-dimensional vistas of location probability and 
Theil's inequality statistics (TIS). Digest®, an experimental system dynamics software, allows looking at 
the experiment causally, as opposed to merely looking at coincidental, due to randomness, SPC charts and 
entropy (uncertainty) measures. Looking under the hood, so to speak, Digest® helps explain exactly how 
the circular, feedback-loop relations among variables in the funnel experiment system produce assump-
tion-violating dynamics as multiple feedback loops determine system behavior. Enhancing SPC with sys-
tem dynamics, and vice versa, can help detect, explain and prevent tampering with the very processes that 
managers must manage. 

Keywords: assumptions, Deming, entropy, feedback, funnel experiment, Shewhart charts, simulation, sta-
tistical process control (SPC), system dynamics, tampering, uncertainty 
 
Jill and Jack met a week ago. Yesterday, Jack called Jill and asked her to join him for dinner at 
‘Avra,’ an exclusive restaurant in New York City. Excitedly, Jill was quick to accept. The dinner 
started at 7 PM. Within minutes, Jill realized that random thoughts disturb Jack. Jill immediately 
started thinking of possible strategies to cope with Jack’s random thoughts and their influence on 



her interaction with Jack. Jill recalled Deming’s (2000a and b) ‘funnel experiment’ to help her 
explore the implications of tampering with Jack’s random thought patterns. 
 According to Merriam-Webster's Collegiate Dictionary (2001), 'tampering' entails carrying 
on underhand or improper negotiations (as by bribery) and interfering so as to weaken, to make 
something worse. In management, tampering entails reacting to common-cause variation or ran-
domness in a process as if it were special-cause variation. Every time a manager mistakes ran-
domness for special-cause variation, tampering makes processes, i.e., Merriam-Webster's 'some-
thing', worse too. Managers who understand that tampering with a process is harmful will let the 
process run and study it (Latzko and Saunders 1995). But the profound knowledge required to 
stop tampering (a) has no substitute and (b) is not automatic (Deming 2000a and b). It takes wis-
dom to manage the uncertainty that leads to tampering with a process. And managing uncertainty 
must be learnt; must be led (Georgantzas and Acar 1995). 
 According to Deming (2000a and b), managers tamper with processes because they are 
trained to do so. They react to each rise in performance as if things were improving and react to 
each dip in performance as if things were beginning to fall apart. Typically, nothing has changed 
at all. What managers react to is common randomness, which pervades all business systems and 
processes as "a measure of our ignorance" (Sterman 2000, p. 127). 
 It was Walter A. Shewhart of the Bell Telephone Laboratories who first used statistics for 
quality control. Shewhart's 16 May 1924 memorandum featured the very first sketch of a modern 
control chart (cf. Schultz 1994, p. 5). Shewhart worked on and improved his approach until his 
1931 book (Shewhart 1980) set the tone for statistical process control (SPC). To tell between 
chance and assignable causes or variation, he created a method to distinguish one type of varia-
tion from the other. Following Shewhart, Deming (2000a and b) refers to 'common' and 'special' 
causes of variation. Common causes are inherent in a process. Special causes are rare events that 
require immediate action. When a machine starts producing defects consistently, for example, it 
must be taken off line for repair. But eighty to ninety percent of product and service variation is 
due to common causes, endemic to a process. The only way to reduce common variation is to 
redesign the process itself. 
 To show subtle but pervasive forms of tampering with stable processes, Deming used the 
funnel experiment for which he credits Dr. Lloyd S. Nelson, Director of Statistical Methods, 
Nashua Corporation (Deming 2000a, p. 20). Its well-established four rules determine the funnel 
and marble dynamics, i.e., behavior through time. MacGregor (1990) used the funnel experiment 
to show the value of control versus no control for a drifting process mean, Gunter (1993) for ex-
perimental design and Sparks and Field (2000) to check their SPC chart assumptions. 
 Sparks and Field see in the funnel experiment a useful tool for quality trainers to show 
practitioners how to use SPC charts correctly. Inappropriate charts lead to excessive, unnecessary 
adjustment of a process, time lost in looking for nonexistent special causes, or to a belief that the 
process is out of control because of the false signaling of special causes. Well aware that deci-
sions based on 'black-box' SPC charts can be incorrect (Field and Sparks 1995), Sparks and Field 
(2000) present a unidimensional analysis of the funnel experiment as a means of training workers 
to become discerning SPC users. Sparks and Field also address practitioner concerns about the 
behavior that the funnel experiment SPC charts produce. 
 Interspersed with real-world tampering examples, the funnel experiment overview below 
reiterates the practitioner concerns that Sparks and Field (2000) address because of their educa-
tional value. The model description section then presents a system dynamics (Forrester 1958 and 
1961) model of the funnel experiment. The results show the model's usefulness as it helps repli-
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cate Sparks and Field's (2000) SPC charts and statistical tests. Also, it measures location uncer-
tainty using Shannon's information entropy (Shannon and Weaver 1949) and thereby shows an 
entropy (uncertainty) based view of the funnel experiment. Next, however, the paper goes be-
yond the uni-dimensional analysis of SPC charts. It adds three-dimensional graphs of location 
probability and Theil's (1966) inequality statistics (TIS). Digest®, an experimental system dy-
namics software, allows looking at the experiment causally, as opposed to merely looking at co-
incidental, due to randomness, SPC charts and entropy (uncertainty) measures. Looking under 
the hood, so to speak, Digest® helps explain exactly how the circular, feedback-loop relations 
among variables in the funnel experiment system produce assumption-violating dynamics as 
multiple feedback loops determine system behavior. Enhancing SPC with system dynamics, and 
vice versa, can help detect, explain and prevent tampering with the very processes that managers 
must manage. 

Deming's funnel experiment and quality practitioner concerns 
An apparatus that demonstrates Deming's funnel experiment includes a mobile stand that holds a 
funnel at a fixed height above a gridded paper pad (Fig. 1). The point (0, 0) on the gridded pad 
designates the target. Imagine dropping the marble down the funnel. The marble rolls down in-
side and out the funnel in a random fashion. Friction, gravity and harmonics are some of the 
natural forces acting on the marble to produce common-cause, i.e., random, variation (Latzko 
and Saunders 1995, p. 151). 

Figure 1 An apparatus for the Deming- Nelson funnel experiment 

 
 With the funnel clamped to its steady stand, the marble drops on the gridded pad and rolls 
until it stops somewhere near the target. A pen easily marks the spot where the marble comes to 
a rest. When repeatedly dropped through the funnel, the marble does not always land nor does it 
come to a rest on the same spot. Natural forces make it drop and stop randomly around the target. 
Performing the funnel experiment requires dropping the marble through the funnel multiple 
times, while one of the four rules on Table 1a determines the funnel's aiming point (Deming 
2000a and b, Latzko and Saunders 1995, Sparks and Field 2000). 
 Rule 1 means no tampering (Table 1a). The funnel remains aimed at the target. Its position is the same for 
each drop, "producing a stable distribution of points and a minimum variance on any diameter drawn through the 
target" (Deming 2000a, p. 329). 
 Rule 2 implies reacting to an individual data point by correcting in an equal and opposite direction. Adjusting 
the position of a gun after firing one shot at a target is one example of this form of tampering. Another example is 
the tampering that takes place with the thermostat in a conference room. Someone feels hot when coming into the 
room from the hallway and, on the basis of this one data point, how the room feels upon entering it, adjusts the 
thermostat. That person is changing the system based on that one point. Someone else comes in later, when the room 
is on the cool side of its cycle, and tampers the system up to a higher temperature. Over the course of the day these 
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tampering adjustments increase the variation of the temperature in the room. Back to the funnel experiment, Rule 2 
produces stable results, but the variance of the distribution of points along any diameter drawn through the target 
will, under Rule 2, be double the expected variance under Rule 1 (Deming 2000a, Sparks and Field 2000). 

Table 1 The Deming-Nelson funnel experiment (a) rules and (b) practitioner questions 
(a) Rule Simplified rule description adapted from Deming (2000a, p. 328)* 

 1 Keep funnel aimed at the target (no tampering) 

 2 Move funnel from its last position to compensate for last error 

 3 Move funnel from the target to compensate for last error 

 4 Move funnel right over the previous drop location 

(b) Question Quality practitioner questions adapted from Sparks and Field (2000, p. 292) 

♦ 1 Under Rule 2, why does the  x  chart hug the centerline?  

♦ 2 Why does the Rule 3  x  chart hug the centerline even more? 

 3 Why does the Rule 3  x  chart develop a strong alternating behavior for odd sample sizes? 

 4 Why do later vales on the Rule 3  x  chart with odd sample sizes deviate more from the cen-
terline than do earlier values? Why is this behavior not apparent for even sample sizes? 

♦ 5 Why does the Rule 4  x  chart behave as if very out of control? 

 6 Given the processes under the four different rules, what are the appropriate charts? 

* In addition to crediting Dr. Lloyd S. Nelson for the funnel experiment idea, Deming attributes experimental results 
to Lord Rayleigh's work on vibrations and theory of sound, and to Dr. Frank S. Grubbs (Grubbs 1983) for optimum 
convergence to the target (Deming 2000a, p. 329). 
♦ Although Sparks and Field (2000) do a remarkable job in answering quality practitioner questions from a statisti-
cal viewpoint, the simple system dynamics model of the funnel experiment presented here can still offer insight in 
answering Questions 1, 2 and 5. 

 Rule 3 makes one forget about the target and react only to the last event that happens. The system explodes as 
the marble rest points eventually move away farther and farther in opposite direction from the target, in a symmetri-
cal bow-tie pattern; an accelerating swing from one direction to another. Escalating warfare is an example of Rule 3 
tampering. One side increases its nuclear arms. The other sides increase theirs. The first side then reacts by increas-
ing its arms, and so on. Zero-based budgeting, price wars between stores, promotional competition, shouting 
matches, one-upmanship and the wildcard interest rates of the late 1970s are good examples too. Usually, escalation 
persists until the system explodes or outside intervention occurs or one side quits, surrenders or goes out of business. 
In the case of wildcard interest rates, outside intervention by a regulatory agency can bring an end to irrationally 
escalating rates. 
 Rule 4 abandons all hope of hitting the target and tries instead to be consistent with the last outcome. The 
marble eventually moves farther and farther from the target as if executing a random walk under Brownian motion. 
The 'telephone game' that children play is a good example of this tampering rule. One person whispers a story to 
another, who in turn whispers it to another, who again whispers it to another, and so on, until the last person says out 
loud what s/he heard. When the first person announces what was whispered initially, then everyone laughs at how 
the story has completely changed in the game's quiet retelling. Each person whispers the story based on the soft 
whisper by the person before, thereby creating a clear instance of tampering under Rule 4 (Table 1a). The corporate 
version entails rumors that spread throughout a company. With each repetition, the story changes somewhat, often 
wandering off farther from the truth with each retelling. Another example is on-the-job training by employees, with 
each new employee training the next. A training center avoids this type of tampering. Similarly, in real estate, a con-
struction firm draws blueprints before constructing a building. When it makes an addition to the building two years 
later, its engineers redraw the blueprints to include the new addition. A year later, when four offices are combined to 
create a new conference room, new blueprints are made from the last set. Through time, small mistakes accumulate. 
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Based on the last set created, new blueprints begin to differ substantially from the actual building and new mistakes 
get added with new iterations. 
 Under Rule 1 (no tampering), each marble drop is independent of any other drop. So, the 
autocorrelation, covariance and the process mean for Rule 1 are all zero (Sparks and Field 2000). 
Under Rules 2 through 4, however, the aim for each drop depends on where the marble came to a 
rest at the previous drop. Under Rules 2 and 3, the process mean remains zero, but it does change 
under Rule 4, signaling a location change. Sparks and Field (2000) show exact autocorrelation 
and variance results for Rules 2 through 4 and how these three rules violate their assumptions 
about normality. Subsequently, they address the questions of Table 1b by comparing SPC chart 
limits. 
 Shewhart (1980) does not require that distribution characteristics be plotted on SPC charts 
and shows that normality is not essential. If normality were essential, then SPC charts would not 
work as well as they do. Supporting Shewhart's experimental results with the Triangular and the 
Uniform distributions, Wheeler's (2000) data from 1,143 heap-, J- and U-shaped probability dis-
tributions confirm that deviations from normality have little effect on SPC chart parameters. Bol-
stered by the Central Limit Theorem, however, some statisticians deem normality desirable, if 
not outright required, as Sparks and Field (2000) argue. 
 To answer the practitioner questions of Table 1b, Sparks and Field show a unidimensional 
version of Deming's funnel experiment. They mathematically model each of its four rules (Table 
1a), which they use to generate experimental data using a computer. From their simulation data, 
Sparks and Field (2000) then plot R and  x  charts, linking the behavior of their charts to the prac-
titioner questions of Table 1b. 
 The system dynamics model generates experimental data too using a computer. Based on 
the simulation data, the results section first replicates Sparks and Field's (2000) unidimensional 
analysis and then checks their statistical assumptions. It adds three-dimensional views of the 
marble's location probability for Rules 1 through 4 and Theil's (1966) inequality statistics (TIS) 
for Rules 2 through 4 compared to Rule 1. Also, it measures entropy (uncertainty) about the 
marble's location for Rules 1 through 4 using Shannon's information entropy formula, thereby 
showing an entropy-based view of the Deming-Nelson funnel experiment. After Boltzmann's and 
von Neumann's work on statistical mechanics, Shannon defined information entropy as: 

 
where i runs over all possible outcomes n, pi is the probability of finding the marble in state i, 
and k is a positive constant (Shannon and Weaver 1949). 

Model description 
Extending Sparks and Field's (2000) work on the funnel experiment with system dynamics 
hinges on two bases. First, Deming's (2000b) System of Profound Knowledge, which integrates 
systems, statistics, knowledge theory and psychology, begins with building appreciation for a 
system. Second, Deming said: "Until you draw a flow diagram, you do not understand you busi-
ness" (cf. Schultz 1994, p. 21). System dynamics does use stock and flow diagrams to depict re-
lations among variables in a system. A fundamental tenet of system dynamics is that the structure 
of relations among variables in a system gives rise to its behavior (Sterman 2001, p. 16). Figure 2 
shows the stock and flow diagram of the funnel (Xf, Yf) and marble (Xm, Ym) location, repro-
duced from the simulation model built with iThink® Analyst 7 (Richmond et al. 2001). 
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 There is a one-to-one association between the model diagram of Fig. 2 and its equations 
(Table 2). Like the diagram of Fig. 2, the equations are also the actual output from iThink®. 
Building the model entailed first diagramming the experiment's structure on the glass of a com-
puter screen and then specifying simple algebraic equations and parameter values. The software 
enforces consistency between the diagram and the equations, while its built-in functions help 
quantify parameters and variables pertinent to the funnel experiment rules, instigated with two 
switches (Fig. 2, and Eqs 2.15 and 2.16, Table 2). 
 In system dynamics, rectangles represent stocks or level variables that can accumulate, 
such as the funnel Xf and Yf coordinates on Fig. 2. Emanating from cloud-like sources and ebb-
ing into cloud-like sinks, the double-line, pipe-and-valve-like icons that fill and drain the stocks 
represent flows or rate variables that cause the stocks to change. The pulse Xm outflow (right of 
Fig. 2), for example, bleeds dry the marble Xm stock after a pen marks the spot where the marble 
comes to a rest. Single-line arrows represent information connectors, while circular icons depict 
auxiliary converters where constants, behavioral relations or decision points convert information 
into decisions. Under Rule 2, for example, the change Ym flow depends on the funnel Yf coor-
dinate stock, adjusted by the marble's random angle and random distance as it randomly rolls 
down inside and out the funnel. 
 Rule 1 requires that both switches equal zero to keep the funnel's position the same for 
each marble drop. Without tampering, the funnel stays aimed at the fixed (0, 0) target. As long as 
Rule 1 plays, the funnel's Xf and Yf coordinates (Eqs 2.1 and 2.2) retain their initial (INIT) zero 
value (Eqs 2.1.1 and 2.2.1). Only the Xm and Ym stocks (Eqs 2.3 and 2.4) and their associated 
flows and converters on Fig. 2 are active under Rule 1. Each marble drop entails generating a 
random angle between zero and 2π radians (Eq. 2.13) and a random distance between zero and 
one inch (Eq. 2.14). Together, the product of the random angle cosine (COS) and random dis-
tance then determines the change Xm inflow (Eq. 2.9), which feeds the marble Xm coordinate 
(Eq. 2.3). Similarly, the product of the random angle sine (SIN) and random distance determines 
the change Ym inflow (Eq. 2.11), which feeds the marble Ym coordinate (Eq. 2.4). "No tamper-
ing" (Deming 2000a, p. 328) means, however, independent marble drops (Sparks and Field 2000, 
p. 293). That is why the pulse Xm and pulse Ym outflows (Eqs. 2.10 and 2.12) are quick to com-
pletely drain the marble Xm and Ym stocks (Eqs 2.3 and 2.4), respectively, after a pen marks the 
spot where the marble comes to a rest. 
 Rule 2 calls for setting switch 1 = –1 to enable the funnel to move, erroneously correcting 
in an equal but opposite (–) direction in response to an individual (Xm, Ym) data point. But 
switch 2 again equals zero (Eq. 2.16) to let the funnel Xf and Yf coordinate stocks (Eqs 2.1 and 
2.2) accumulate. Deming calls the accumulation of the funnel Xf and Yf coordinate stocks 
"Memory 1" in his description of Rule 2 (Deming 2000a, p. 328). With the aim for each drop 
now dependent on where the marble came to a rest at the previous drop, the cumulative Xf and 
Yf coordinates affect the change Xm and change Ym inflows (Eqs 2.9 and 2.11). Feeding these 
flows with the previous drop location's cumulative data means adding to and actually doubling 
the variance of the marble's Xm and Ym coordinates (Sparks and Field 2000, p. 293). 
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Figure 2 The funnel (Xf, Yf) and marble (Xm, Ym) location 

 
Table 2 The funnel (Xf, Yf) and marble (Xm, Ym) location equations 
Stocks: level or state variables Eq. #
Xf(t) = Xf(t – dt) + (change Xf – pulse Xf) * dt 
 INIT Xf = 0 {funnel X coordinate; unit = inch} 
Yf(t) = Yf(t – dt) + (change Yf – pulse Yf) * dt 
 INIT Yf = 0 {funnel Y coordinate; unit = inch} 
Xm(t) = Xm(t – dt) + (change Xm – pulse Xm) * dt 
 INIT Xm = 0 {marble X coordinate; unit = inch} 
Ym(t) = Ym(t – dt) + (change Ym – pulse Ym) * dt 
 INIT Ym = 0 { marble X coordinate; unit = inch} 

(2.1) 
(2.1.1) 

(2.2) 
(2.2.1) 

(2.3) 
(2.3.1) 

(2.4) 
(2.4.1)

Flows: rate variables  
change Xf = switch 1 * Xm {unit = inch / drop; t = TIME = 200 drops or trials} 
pulse Xf = PULSE(switch 2 * Xf, 1, 1) {unit = inch / drop} 
change Yf = switch 1 * Ym {unit = inch / drop} 
pulse Yf = PULSE(switch 2 * Yf, 1, 1) {unit = inch / drop} 
change Xm = Xf + COS(random angle) * random distance {unit = inch / drop} 
pulse Xm = PULSE(Xm, 1, 1) {unit = inch / drop} 
change Ym = Yf + SIN(random angle) * random distance {unit = inch / drop} 
pulse Ym = PULSE(Ym, 1, 1) {unit = inch / drop} 

(2.5) 
(2.6) 
(2.7) 
(2.8) 
(2.9) 

(2.10) 
(2.11) 
(2.12)

Converters: auxiliary variables and constants  
random angle = RANDOM(0, 2 * PI) {unit = radian / drop} 
random distance = RANDOM(0, 1) {unit = inch / drop} 
switch 1 = 0 {unit = dimensionless} 
switch 2 = 0 {unit = dimensionless} 

(2.13) 
(2.14) 
(2.15) 
(2.16)

 Rule 3 again makes the aim for each drop depend on where the marble came to a rest at the 
previous drop. But there is no funnel stock accumulation now; "No memory" (Deming 2000a, p. 
328). Setting switch 2 = 1 activates the pulse Xf and pulse Yf outflows (Eqs 2.6 and 2.8) and 
thereby eliminates the funnel Xf and Yf coordinate accumulation. Once activated, the pulse Xf 
and pulse Yf outflows render the funnel Xf and Yf coordinates memoryless. The lack of memory 
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makes one forget about the (0, 0) target and react only to the last event. Like an escalating war-
fare, the marble consecutive rest points eventually move away farther and farther in opposite di-
rection from the target, in an accelerating swing from one direction to another. The marble Xm 
and Ym coordinate variance rises with each marble drop (Sparks and Field 2000, p. 293). 
 Rule 4 not only wants the funnel Xf and Yf coordinates memoryless too, but completely 
abandons all hope of hitting the target and tries instead to be consistent with the last outcome. 
Like the muddling through of the telephone game and the logical incrementalism some strategy 
theorists prescribe (e.g., Mintzberg 1994 and Quinn 1980), the marble eventually moves farther 
and farther from the target as if executing a random walk. Its Xm and Ym coordinate variance 
rises proportionally with each marble drop as the aim for each drop again depends on where the 
marble came to a rest at the prior drop (Sparks and Field 2000, p. 293). 

Marble location probability (Pml) and entropy/uncertainty (Uml) 
Computing the entropy (uncertainty) about the marble location with Eq. 1 is equivalent to assess-
ing its state after each drop. To make it so requires gridding or tiling a paper pad (Fig. 1) and 
then computing location probabilities by counting how frequently the marble hits each tile, i.e., 
comes to a rest there. The marble location probability (Pml) and uncertainty (Uml) measures 
compute the uncertainty about marble location after each drop. 
 One can choose a tiling scheme empirically after observing running simulations. A 15×15 
tiling would, for example, require a total of 225 array elements, but one can get away with only 
49, thanks to a 7×7 tiling scheme. Extreme cases, i.e., a 1×1 grid, notwithstanding, grid resolu-
tion has no effect on the shape of the entropy/uncertainty increase, but simply reduces time to 
saturation, i.e., Uml reaching its upper bound of one (Georgantzas 2002). It is possible to com-
pute location probabilities by averaging over multiple simulation runs, but Pml and Uml compute 
marble location probabilities and uncertainty (entropy) dynamically. 

Simulation results 
The results here entail setting the iThink® run specs as follows: Euler's integration method with 
simulation length TIME ∈ [1, 200] (drops) and computation interval dt = 1. These settings match 
Sparks and Field's (2000) specifications. The phase plots of Fig. 3 show how marble (Xm, Ym) 
location patterns form under Rules 1 through 4. Although Sparks and Field do not show any 
phase plots, the ones on Fig. 3 are similar to those of Deming (2000a, p. 328) and Latzko and 
Saunders (1995, pp. 151-154). 
 Rule 1 (no tampering) keeps the funnel stationary, aimed at the (0, 0) target, as the marble 
drops. The marble then rolls until it stops somewhere near the target. As the marble comes to a 
rest near the target for 200 successive drops, its marked rest points form a circular gradient pat-
tern (top left, Fig. 3). This circular pattern is the result of a process in control with common-
cause or random variation. 
 Rule 2 erroneously compensates for the last error in an equal but opposite (–) direction in 
response to the marble (Xm, Ym) location data. The switch 1 = –1 value enables the funnel to 
move now, but switch 2 still equals zero, letting the funnel Xf and Yf stocks accumulate. The top 
right of Fig. 3 shows that Rule 2 produces stable results, but the variance of the distribution of 
points along any diameter drawn through the target is double the expected variance under Rule 1 
(Deming 2000a, Sparks and Field 2000). 
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Figure 3 Marble location (Xm, Ym) phase plots for Rules 1 through 4 (200 drops per rule) 

 
 Rule 3 makes the aim for each drop depend on where the marble came to a rest at the pre-
vious drop, but without any stock accumulation; no memory now. The lack of memory due to 
switch 2 = 1 causes the marble rest points to move away farther and farther in opposite direction 
from the target. Like those irrational, escalating price wars between stores, the funnel's and mar-
ble's accelerating swing from one direction to another form the symmetrical bowtie-like pattern 
on the lower left of Fig. 3. 
 Rule 4 causes the marble rest points to move farther and farther from the target as if exe-
cuting a random walk under Brownian motion. The phase plot on the lower right of Fig. 3 shows 
a typical instance of tampering under Rule 4. Not only the funnel Xf and Yf coordinates are 
memoryless now but, much like muddling through and logical incrementalism proponents and 
managers, Rule 4 abandons all hope of hitting the target and tries instead to be consistent with 
the last outcome. The Xm and Ym coordinate variance rises proportionally with each marble 
drop as the aim for each drop again depends on where the marble came to a rest at the previous 
drop (Sparks and Field 2000, p. 293). 

Statistical behavior and test reproduction 
Sparks and Field's (2000) unidimensional results entail 200 simulated consecutive marble drops 
through the funnel under each rule. They then take 50 successive samples of size n = 4 from their 
200 marble drops and plot R (range) and  x  (x-bar) charts. Applied to the data of Fig. 3, Sparks 
and Field's sampling procedure produces the R and  x  charts of Fig. 4, Fig. 5 and Fig. 6. 
 The normality assumptions Sparks and Field (2000, p. 295) choose to test for are: 

R chart: sample values are both independent and approximately normally dis-
tributed with constant variance. 

  x  chart: sample values are independent and their means are approximately 
normally distributed with constant variance. 

 The between values correlation coefficient (r), which measures the degree to which data 
co-vary, gives the lag j sample autocorrelation coefficient (r j ) between lagged samples. A zero 
autocorrelation means uncorrelated values. If uncorrelated values are also normally distributed, 
then they are independent. To check for autocorrelation and independence, Sparks and Field 
(2000, p. 296) compute the autocorrelations between lagged samples that the funnel experiment 
rules generate. Using this approach, Fig. 7 shows the Xm lag j autocorrelations r j that Rules 1 
through 4 generate ( j = 0, 1, …, 9). After lag zero, all Rule 1 autocorrelations are nonsignificant 
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(top left, Fig. 7). But the rest of Fig. 7 shows significant Xm autocorrelations after lag zero for 
Rules 2, 3 and 4, indicating that the adjacent Xm values these rules generate are dependent. 

Figure 4 R (range) charts for Rules 1 through 4 (sample size n = 4) 

 
Figure 5   x  (x-bar) charts for Rules 1 through 4 (sample size n = 4) 

 
Figure 6 R (range) and  x  (x-bar) charts for Rule 3 (sample size n = 5) 
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Figure 7 The lag j autocorrelations r j for Xm, Rules 1 through 4 ( j = 0, 1, …, 9) 

 
 The way Sparks and Field (2000, p. 296) check for the constant variance assumption in in-
dividual sample values entails comparing parallel boxplots for the first half of the data in a sam-
ple with the other half. Using their approach, Fig. 8 shows the parallel boxplots of the marble 
Xm coordinate data for Rules 1 through 4. It is worth noting that while Rules 3 and 4 both show 
increasing variance (lower panel, Fig. 8), Rules 1 and 2 do not (top panel, Fig. 8). The results of 
Fig. 8 confirm those of Sparks and Field. While Rules 1 and 2 produce data with homogeneous 
variance, the Rule 3 and 4 data are likely to show variance heterogeneity. 

Figure 8 Parallel boxplots of Xm for Rules 1 through 4 (200 drops per rule) 

 
 To test for the variance homogeneity and normality assumptions, Sparks and Field use 
Wilk and Gnanadesikan's (1968) Q-Q plot, which computes the i th quintile from standard nor-
mal tables. When both the variance homogeneity and the normality assumptions hold, then the 
Q-Q plot is linear. Deviations from linearity mean outlying data, variance heterogeneity or non-
normality. Figure 9 shows the Q-Q plots for the individual sample data of the marble Xm coor-
dinate under Rules 1 through 4. The Q-Q plots for Rules 1 and 2 (top panel, Fig. 9) show nor-
mally distributed data with homogeneous variances. But the Rule 3 and Rule 4 Q-Q plots (lower 
panel, Fig. 9) show sample data either not normally distributed or with heterogeneous variance. 
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Figure 9 Q-Q plots of marble X coordinate (Xm) for Rules 1 through 4 (200 drops per rule) 

 
Answers to quality practitioner questions with statistics 
Statistical process control charts like the ones Fig. 4, Fig. 5 and Fig. 6 show make quality practi-
tioners ask the questions of Table 1b. To answer Question 1: «Under Rule 2, why does the  x  
chart hug the centerline?» Sparks and Field explain that the large variance of tampering Rule 2 
inflates the control limits of both the R (top right, Fig. 4) and the  x  (top right, Fig. 5) charts. But 
what causes the large variance under Rule 2? How does the structure of relations among vari-
ables in the funnel experiment system gives rise to dynamics that violates Sparks and Field's as-
sumptions of independence and homogeneous variance? 
 In response to Question 2: «Why does the Rule 3  x  chart hug the centerline even more?» 
Sparks and Field explain that the large variance of tampering Rule 3 inflates the control limits of 
both the R (lower left, Fig. 4) and   x  (lower left, Fig. 5) charts, causing them to hug the center-
line. Again, why the large variance under tampering Rule 3? What causes it? 
 Sparks and Field (2000) answer all questions of Table 1b, at least from their perspective. 
The system dynamics model of the funnel experiment presented here can still offer insight in an-
swering Questions 1, 2 and 5 (marked with the filled diamond symbol '♦' on Table 1b). In re-
sponse to Question 3: «Why does the Rule 3  x  chart develop a strong alternating behavior for 
odd sample sizes?» for example, there is little insight this simple model can add because, to keep 
it simple, SPC sampling and plotting procedures are external and posterior to the model. 
 To answer Question 3 (Table 1b), Sparks and Field explain that because the sample means' 
autocorrelation is close to –1 for odd lags and +1 for even lags, the  x  values alternate above and 
below the centerline. Differences in the alternating behavior of the sample means are seen in 
comparing the sample size four (n = 4)  x  chart (lower left, Fig. 5) to its sample size five (n = 5) 
counterpart (right panel, Fig. 6). Their response to Question 4 (Table 1b) is that, although R 
charts generally behave similarly for even and odd sample sizes (lower left of Fig. 4 and left 
panel of Fig. 6), the sample size four (n = 4) means (lower left, Fig. 5) have a much smaller and 
constant variance than the variance of sample means with n = 5 (right panel of Fig. 6) for large i 
(number of marble drops) values (Sparks and Field 2000, p. 298). 
 In response to Question 5: «Why does the Rule 4  x  chart behave as if very out of con-
trol?» Sparks and Field explain that the sample mean variance under Rule 4 increases with each 
marble drop. The larger the number of marble drops, the more the  x  chart centerline or process 
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mean will differ from its zero target. The "increasing uncertainty" about  x  values as the marble 
drops increase, "together with the increased autocorrelation between these values explains why 
the [  x ] values are likely to wander away from zero as i [the number of marble drops] increases" 
(Sparks and Field 2000, p. 298). But what causes the large variance of tampering Rule 4? How 
does the structure of relations among variables in the funnel experiment system give rise to dy-
namics that violates the "approach of using within-group variation to estimate the process vari-
ance [and] makes matters a great deal worse" (Sparks and Field 2000, p. 298)? 
 Sparks and Field conclude by answering Question 6. They recommend using "CUSUM 
charts of residuals for identifying special cause behavior particularly for processes that wander" 
(2000, p. 298).  

Beyond unidimensional analysis: marble location probability (Pml) 
The three-dimensional surface plots of the marble location probability (Pml) confirm the roughly 
normally distributed data with homogeneous variance under Rules 1 and 2 (top panel, Fig. 10). 
Naturally, since the marble Xm and Ym coordinates are two different variables, one must no 
longer talk of a normal distribution but, rather, of a bivariate normal distribution. And the tails of 
the bivariate normal distribution that Rule 2 produced (top right, Fig. 10) are fat. Indeed, they are 
much fatter than the tails of the bivariate normal distribution that Rule 1 produced (top left, Fig. 
10). This corroborates Deming's (2000a) and Sparks and Field's (2000) argument that, under 
Rule 2, the variance of the distribution of points along any diameter drawn through the target is 
double the expected variance under Rule 1. 

Figure 10 Marble location probability (Pml) for Rules 1 through 4 (2,000 drops per rule) 

 
 The three-dimensional surface plots of the marble location probability (Pml) for Rules 3 
and 4 (lower panel, Fig. 10) confirm the possibility of outlying observations, heterogeneity and 
non-normality that the Q-Q plots for Rules 3 and 4 show (lower panel, Fig. 9). Again, the distri-
bution one must talk of is the bivariate normal because Xm and Ym are two different variables. 
But the results Rules 3 and 4 produce do not look like anything close to a bivariate normal distri-
bution (lower panel, Fig. 10). 
 As Rule 3 makes the marble rest points move away farther and farther in opposite direction 
from the (0, 0) target, Pml gets low near the target and fat at the tails of its would-have-been 
bivariate normal distribution. Indeed, the Rule 3 Pml shows much more dispersion than one 
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would expect to see in a bivariate normal distribution (lower left, Fig. 10). This reconfirms the 
variance heterogeneity that the parallel boxplot on the lower left of Fig. 8 shows. 
 Similarly, Rule 4 moves the marble rest points farther and farther from the target as if exe-
cuting a random walk. Consequently, Pml shifts toward a right skew, showing a long, big, fat tail 
to the right (lower right, Fig. 8). This corroborates Sparks and Field's (2000, p. 293) prediction 
that Pml will rise proportionally with each marble drop as the aim for each drop depends on 
where the marble came to a rest at the previous drop. 

Theil's inequality statistics (TIS) 
Sparks and Field's (2000, p. 298) recommendation to use residual (error) plots to detect proc-
esses that wander prompts Theil's (1966) inequality statistics (TIS). TIS use the mean square er-
ror (MSE), which measures the average error between competing data series in the same units as 
the variable itself and weights large errors much more heavily than small ones. TIS provide an 
elegant decomposition of the MSE into three components: bias (UM), unequal variation (US) and 
unequal co-variation (UC), so that UM + US + UC = 1. 
 Bias arises when competing data have different means. Unequal variation implies that the 
variances of two time series differ. Unequal covariation means imperfectly correlated data that 
differ point by point. Dividing each component by the MSE gives the MSE fraction due to bias 
(UM), due to unequal variation (US) and due to unequal covariation (UC). 
 A large UM reveals a potentially serious systematic error. US errors can be systematic too. 
When unequal variation dominates the MSE, the data match on average and are highly correlated 
but the variation in two time series around their common mean differs. One variable is a 
stretched out version of the other. US may be large either because of trend differences, or because 
the data have the same phasing but different amplitude fluctuations (Sterman 2000, p. 876). 
 If most of the error is concentrated in unequal covariation, then the data means and trends 
match but individual data points differ point by point. When UC is large, then most of the error is 
unsystematic and, according to Sterman: «a model should not be faulted for failing to match the 
random component of the data» (2000, p. 877). 
 Figure 11 shows Theil's inequality statistics for Rules 2 through 4 compared to Rule 1, 
Rule 1 being a process in control with common-cause or random variation. The Xm time series 
data used for the three-dimensional TIS column chart of Fig. 11 are the same with those used for 
the Fig. 3 phase plots and the R and  x  charts of Fig. 4 and Fig. 5. Overall, moving from the Rule 
2 vs. Rule 1 to Rule 3 vs. Rule 1 to Rule 4 vs. Rule 1 comparisons, TIS discount the randomness 
in the funnel experiment and ascribe the MSE fraction to increasingly rising systematic error. 
 Specifically, most of the Rule 2 vs. Rule 1 MSE fraction soars above unequal variation US, 
with a still large remaining MSE fraction over unequal covariation UC. The MSE fraction over 
UC shows that the Rule 1 and Rule 2 grand means match, but the individual data points these 
rules produce differ point by point, showing a possibility of unsystematic, i.e., random, error. But 
the larger MSE fraction over unequal variation US shows systematic error: the Rule 1 and Rule 2 
sample means are the same, but much more dispersion characterizes Rule 2 than Rule 1. 
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Figure 11 TIS for Rules 2 through 4 compared to Rule 1 (UM + US + UC = 1) 

 
 The Rule 2 vs. Rule 1 comparison of Fig. 11 supports Sparks and Field's answer to quality 
practitioner Question 1 (Table 1b). The SPC charts hug their centerline because tampering Rule 
2 causes the large unequal variation US that TIS pick up and which translates into the large vari-
ance that inflates the R and   x  chart control limits (top right, Fig. 4 and Fig. 5). Still, what causes 
the large variance under tampering Rule 2? How does the structure of relations among variables 
in the funnel experiment system give rise to its assumption-violating dynamics? 
 Similar to the Rule 2 vs. Rule 1 comparison, most of the Rule 3 vs. Rule 1 MSE fraction 
again ascends above unequal variation US, but the remaining MSE fraction over unequal covaria-
tion UC is now smaller than before. The small MSE fraction over unequal covariation UC shows 
that the Rule 3 and Rule 1 grand means match, yet the sample means these rules produce differ 
point by point, again showing possible unsystematic error. The large remaining MSE fraction 
over unequal variation US shows systematic error: the Rule 1 and Rule 3 sample means match, 
but Rule 3 creates more dispersion than Rule 3 and much, much more than Rule 1. 
 These results further support Sparks and Field's answer to Question 2 (Table 1b). The Rule 
3   x  chart hugs the centerline even more because the variance of tampering Rule 3, which inflates 
the SPC chart control limits, is so large compared to the stable Rule 1 variance that TIS pick it up 
as serious systematic error. Yet, how does the large variance under tampering Rule 3 happen? 
What causes it? How do the relations among the funnel system variables cause behaviors that 
violate Sparks and Field's normality assumptions? 
 Moving on to the Rule 4 vs. Rule 1 comparison of Fig. 11, the 3D TIS column chart tells an 
entirely different, serious systematic error story. The high UM MSE fraction shows that the data 
Rules 1 and 4 generate differ far beyond unequal variation. The competing Rule 4 vs. Rule 1 
process data have different means. Once more, TIS corroborate Sparks and Field's answer to 
Question 5: the larger the number of marble drops under Rule 4, the more the   x  chart centerline 
or process mean will differ from the Rule 1 zero target. But what is it that causes such a large 
variance under Rule 4 that the process mean shifts? 

An entropy-based view of tampering 
In response to Sparks and Field's (2000, p. 298) concern about the increasing   x  value uncertainty 
as marble drops increase, the model computes marble location uncertainty (Uml) after each drop 
dynamically, using Shannon's entropy (uncertainty) formula (Eq. 1). Typically, as marble drops 
increase, average Uml increases until it saturates at its maximum value of one. The more times 
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the marble drops through the funnel, the more its final rest points disperse throughout the 7×7 
tilling grid, the higher average Uml grows (Fig. 12). 
 Initially, average Uml is zero and it starts rising as the marble drops increase, coming to a 
rest randomly around the (0, 0) target. It takes a few marble drops until the tampering Rules 2 
through 4 take their toll. Until then, as if uncoupled from Deming's tampering rules, the average 
Uml behavior is identical for all four rules. After the first few drops, however, tampering begins 
to show. Uncertainty about the marble's location increases rapidly, its final landing points now 
guided by Deming's tampering rules. Average Uml continues to rise, but does so at a lower rate 
for Rule 1 than for Rules 2 through 4 (Fig. 12). 

Figure 12 Average marble location uncertainty (Uml) for Rules 1 through 4 (500 drops per rule) 

 
 Even if sequestered, there is some uncertainty about the marble's location when Rule 1 
plays. When Rules 2 through 4 play, however, average Uml rises rapidly and concomitantly, 
quickly reaching for its maximum value of one. Under Rules 2 through 4, average Uml is already 
very close to its saturation point before marble drop 30. But, without tampering, despite its ran-
domness, process Rule 1 continues to sequester the entropy/uncertainty about the marble's 
whereabouts long past marble drop 30 (Fig. 12). 

Feedback-loop structure analysis 

How structure causes behavior 
Figures 13 though 16 revisit the model's funnel (Xf, Yf) and marble (Xm, Ym) location (Fig. 2) 
to show how the feedback-loop structure of relations among variables in the funnel experiment 
system causes its dynamics. Phase plots highlight the causal relations among the specific vari-
ables embedded in feedback loops and confirm loop polarity. Both the funnel and the marble X 
and Y location dimensions are in perfectly symmetrical feedback loops, so Fig. 13 through 16 
show relations (arrow links) that involve the Xf (funnel X coordinate) and Xm (marble X coor-
dinate) dimensions only. 
 Rule 1 (no tampering) entails one single feedback loop (Fig. 13). Its structure depicts the 
process of first marking the Xm coordinate where the marble comes to a rest and then purging its 
value since consecutive marble drops are independent. The Xm stock and the pulse Xm outflow 
are the two variables embedded in this compensating (negative) feedback loop, its negative pulse 
Xm-Xm arrow link so marked on Fig. 13 because the link emanates from an outflow. System 
dynamics accepts this causal loop or influence diagramming (ID) convention because link po-
larities depict system structure, not behavior (Richardson 1995; Sterman 2000, p. 139). 
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 Parenthetically, positive (+) links left unmarked is another ID convention. But the loop's 
behavior depends on conditions set outside the Xm-pulse Xm loop. Namely on change Xm, an 
inflow that in turn depends on the product of random angle by random distance. Their product 
adds bipolar (+/–) random input to the change Xm inflow, which in turn feeds the Xm stock. The 
three phase plots on the top right of Fig. 13 confirm the bipolar random behavior of the three 
positive causal links outside the Xm-pulse Xm loop. They turn the negative Rule 1 loop positive 
as the two phase plots on the lower right of Fig. 13 show. 

Figure 13 The marble X coordinate (Xm) feedback loop with phase plots for Rule 1 (200 drops) 

 
 The Xm-pulse Xm feedback loop is negative because it compensates for the random input 
it receives. And does so both consistently and successfully, not only for Rule 1, but also for 
Rules 2 through 4. As the marble drops increase, however, its random input turns the negative 
Xm-pulse Xm loop positive: the more the loop compensates for the bipolar random input it re-
ceives, the more it ends up reinforcing its component variables, Xm and pulse Xm, to move in 
the same direction. 
 This is an interesting first-order feedback loop that the no tampering Rule 1 of the Deming-
Nelson funnel experiment harbors. It makes neither the formal nor the intuitive definitions of 
loop polarity break off but, rather, an exciting case of shifting loop polarity (Richardson 1995). 
The phase plots on the lower right of Fig. 13 confirm the behavior of the Xm-pulse Xm loop as 
the sign of its stock-versus-flow slope, and vice versa. 
 Rule 2 adds a second feedback loop to the structure of relations among variables in the 
funnel experiment system. The funnel can now move from its last position to compensate for the 
last error. The change Xf inflow and Xf stock are the new variables embedded in this second 
compensating (negative) feedback loop. Its Xm-change Xf negative link is so marked on Fig 15 
because of the switch 1 = –1 auxiliary converter, which activates the new loop. Switch 2 still 
equals zero to let the funnel Xf coordinate stock accumulate (Deming's "Memory 1", 2000, p. 
328). Formal and intuitive loop polarity definitions notwithstanding, the very purpose of this new 
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loop, i.e., to compensate, gives away its intended dominant polarity, which the phase plots sur-
rounding the influence diagram (ID) of Fig. 14 confirm. 
 The phase plot on the top left of Fig. 14 shows that the Xf-change Xm link is positive, ac-
cording to the stock-versus-flow slope definition of link polarity. The higher the funnel Xf coor-
dinate stock is, the more its accumulation amplifies the effect of the random angle and random 
distance product on the change Xm inflow to Xm. The corresponding phase plots on the top 
middle of Fig. 14 look very different from those on the top middle of Fig. 13. Although still bi-
polar, neither the cosine pattern of random angle nor the triangular pattern of random distance 
effects on change Xm of Fig. 13 are visible on Fig. 14. This is how destructive the tampering of 
Rule 2 is on the common-cause variation of the funnel experiment. 

Figure 14 Funnel Xf and marble Xm feedback loops with phase plots for Rule 2 (200 drops) 

 
 Worth noting on Fig. 14 is how the flow-versus-stock phase plots of the change Xm-Xm 
and change Xf-Xf links are almost symmetrical. Their respective flow-versus-stock correlation 
coefficient (r) values confirm this almost perfect syzygy (top right and lower left, Fig. 14). But 
the negative Xm-pulse Xm feedback loop continues to compensate for the amplified bipolar ran-
dom input it receives as consecutive marble drops stay close to their zero mean. Again, as the 
marble drops increase, the amplified randomness outside the negative Xm-pulse Xm loop turns it 
positive (lower right, Fig. 15). The more the Xm-pulse Xm loop compensates for the now tam-
pered with bipolar random input it receives, the more its component variables Xm and pulse Xm 
move in the same direction, causing the loop's polarity to shift from negative to positive, with a 
much wider dispersion than Rule 1 did (Fig. 13). 
  Rule 3 adds a third compensating feedback loop to the structure of relations among the 
variables in the funnel experiment system (Fig. 15). The purpose of this new negative feedback 
loop is to bring the funnel back to the (0, 0) target before compensating for the last error (Latzko 
and Saunders 1995, p. 153). It sounds like zero-based budgeting; does it not? While switch 1 still 
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equals –1, it is switch 2 = 1 that activates this third feedback loop and prevents the Xf stock from 
accumulating (Deming's "No memory", 2000, p. 328). 
 The Xf stock and the pulse Xf outflow are the variables embedded in this compensating 
(negative) feedback loop, its negative pulse Xf-Xf causal link so marked on Fig. 15 because it 
emanates from the pulse Xf outflow. The loop's behavior again depends on conditions set out-
side. Namely on the change Xf inflow that depends on the marble Xm coordinate stock, which in 
turn depends not only on its pulse Xm outflow, but also on its change Xm inflow (Eq. 2.3, Table 
2). Change Xm is itself the sum of the funnel Xf coordinate stock plus the product of random 
angle by random distance, which adds bipolar (+/–) random input to change Xm. The three phase 
plots on the top right of Fig. 15 confirm the bipolar random input generated outside the three 
negative feedback loops of Rule 3. Propagated through the network of positive and negative 
links of Fig. 15, this bipolar random input turns the negative Rule 3 loop positive as the two 
phase plots on the left middle show. The dynamic complexity that the feedback-loop structure 
and behavior of the funnel experiment blend can account for the intricate phase plots of the 
change Xm-Xm and change Xf-Xf causal links (top right and lower left, Fig. 15). 

Figure 15 Funnel Xf and marble Xm feedback loops with phase plots for Rule 3 (200 drops) 

 
 The Xf-pulse Xf feedback loop is negative nonetheless. It compensates for the random in-
put it receives, causing consecutive funnel moves to spread around the (0, 0) target. And does so 
successfully for Rule 3, but not for Rule 4 (Fig. 16). As the marble drops increase, however, the 
bipolar random input under Rule 3 turns the negative Xf-pulse Xf loop positive: the more the 
loop compensates for the bipolar random input it receives, the more it ends up reinforcing Xf and 
pulse Xf to move in the same direction. This is another interesting first-order feedback loop that 
Rule 3 of the funnel experiment hides, one more exciting case of shifting loop polarity (Richard-
son 1995). The phase plots on the left middle of Fig. 15 confirm the behavior of the Xf-pulse Xf 
loop as the sign of its stock-versus-flow slope, and vice versa. 
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 Rule 4 does not add a new loop to the structure of relations among variables in the funnel 
experiment system but turns the compensating feedback loop that Rule 2 added into a reinforcing 
one (Fig. 16). The purpose? Trying perhaps to cluster marble drops as close as possible, even if 
away from the (0, 0) target or, as Deming says: "off to the Milky Way" (cf. Latzko and Saunders 
1995, p. 154). While switch 2 = 1 still prevents the Xf stock from accumulating (no memory), 
setting switch 1 = 1 changes the polarity of the middle loop from negative (Fig. 15) to positive 
(Fig. 16). The phase plot on the lower right of Fig. 16 confirms that the Xm-change Xf link turns 
positive because switch 1 = 1. 

Figure 16 Funnel Xf and marble Xm feedback loops with phase plots for Rule 4 (200 drops) 

 
 The Xf-change Xm link is again positive under Rule 4 as the phase plot on the top left of 
Fig. 16 shows. The higher the Xf bias from a previous marble drop, the more it amplifies ran-
domness on the next marble drop. The phase plots on the top middle of Fig. 16 show this off-to-
the-Milky-Way bias of Rule 4, which is negative in this instance of the funnel experiment and 
consistent with the marble location (Xm, Ym) phase plot for Rule 4 (lower right, Fig. 3). 
 The destructive bias of Rule 4 also shows on the flow-versus-stock, symmetrical phase 
plots of the change Xm-Xm and change Xf-Xf links. Almost in perfect syzygy, their respective 
negative r values confirm the negative, in this instance, bias (top right and lower left, Fig. 16). 
The negative Xm-pulse Xm loop continues to compensate for the amplified bipolar random input 
it receives, even though consecutive marble drops no longer stay close to the (0, 0) target. Nei-
ther can the compensating Xf-pulse Xf loop cause consecutive funnel moves to stay around the 
target. As marble drops increase, the now reinforcing middle loop (Fig. 16) amplifies the bipolar 
random input it receives, making consecutive marble drops and funnel moves behave as if exe-
cuting a random walk under Brownian motion. The amplification biases the negative Xm-pulse 
Xm and Xf-pulse Xf loops to compensate away from instead of toward the (0, 0) target. 
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Answers to quality practitioner questions with system dynamics 
The preceding section shows how the structure of relations among variables in the Deming-
Nelson funnel experiment system gives rise to its statistical-assumption violating dynamics. It is 
now possible to add system dynamics insight to answering Questions 1, 2 and 5, marked with the 
filled diamond symbol '♦' on Table 1b. 
 Answer to Question 1:  Rule 2 adds a second feedback loop to the structure of relations 
among variables in the funnel experiment system. In hopes of hitting the target more, the purpose 
of this negative feedback loop is to compensate for the last error by letting the funnel move from 
its last position. The addition of the new negative feedback loop causes common-cause variance 
amplification. The more the funnel moves from its last position, the more its Xf stock accumu-
lates, the more its accumulation causes dependence among consecutive marble drops and thereby 
amplifies the randomness associated with each marble drop. The amplified randomness in turn 
causes the large dispersion that inflates the  x  chart control limits, making it hug the centerline 
(top right, Fig. 5). 
 Answer to Question 2: Rule 3 adds yet another feedback loop to the structure of relations 
among variables in the funnel experiment system. Again hoping to hit the target more, this third 
negative feedback loop brings the funnel back to the (0, 0) target before compensating for the 
last error. So, it prevents Xf from accumulating. Discarding the funnel's last position before 
compensating for the last error should take care of the dependence among consecutive marble 
drops owed to Xf accumulation. Right? 
 Wrong. The stock and flow structure of the funnel experiment system says otherwise. In 
trying to decouple dependence due to stock accumulation, the structure of relations among vari-
ables under Rule 3 makes consecutive marble drops even more dependent on each other, thereby 
causing not only a larger dispersion than that of Rule 1 but also variance heterogeneity. The 
more tightly coupled consecutive marble drops become, the more their dependence amplifies the 
common-cause variance associated with each marble drop, causing again large and now hetero-
geneous dispersion that inflates the  x  chart control limits even more than under Rule 2. So it 
hugs the centerline even more (lower left, Fig. 5). 
 Answer to Question 5: Rule 4 does not add any new loops to the structure of relations 
among variables in the funnel experiment system but turns the compensating feedback loop that 
Rule 2 added (Fig. 14) into a reinforcing one (Fig. 16). Hoping not to hit the target more, but per-
haps to cluster marble drops close together, the Rule 4 structure makes the funnel aim at the pre-
vious marble rest point, while still preventing the funnel Xf stock from accumulating. Again, 
having discarded the dependence of consecutive funnel moves owed to Xf accumulation, Rule 4 
makes consecutive marble drops even more dependent on one another, thereby causing both a 
larger dispersion than that of Rule 1 and variance heterogeneity. 
 Worse yet, purposefully reinforcing the randomness associated with each marble drop 
causes the marble rest points to gradually build a bias, moving in a single direction away from 
the target as if under Brownian motion. The random component of the funnel experiment stays 
consistently exogenous to its deterministic causal loop structure but, apparently, the resolute shift 
in loop polarity now changes the funnel experiment system goal (Richardson 1995). 

Conclusion 
Enhancing SPC with system dynamics? Clearly, combining these two fields of scientific inquiry 
can help detect, explain and prevent tampering with the processes managers must manage. When 
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managers react to variation due to common causes as if it were due to a special cause, two very 
regrettable outcomes become certain. First, their tampering degrades the process and the results 
are more variable than if the process had been left alone. Second, tampering makes it impossible 
to identify the common causes of variation, leaving no information about how the process can 
improve. Sometimes variation can be reduced, by understanding what is causing it in a particular 
situation. Vibration can be damped or prevented, for example, tools can be sharpened more of-
ten, worn parts can be adjusted or replaced, and so on. In other cases, however, such as in cus-
tomer requirements or student interests, variation can be accommodated because is welcome. But 
to deal appropriately with variation, one must first understand it. 
 Most managers use, for example, the words 'accurate' and 'precise' as if they were the same. 
But quality practitioners distinguish between these two very different quality aspects. Imagine an 
archery student and a target set up at a distance with a clearly marked aim point. Once released, 
an arrow flies to strike the target. One can measure the distance from the arrow to the aim point 
to estimate the shot's quality, or the skill of the archer (or the archer's teacher). With only one 
shot, there is no basis for distinguishing between precision and accuracy. After several shots, 
however, say 10, the target's cover has a cluster of 10 holes. Precision measures the dispersion of 
the results (arrow holes). Low variability equals high precision. Accuracy is the deviation of the 
center of the group (sample) of holes from the point of aim. 
 Marks-person trainers also distinguish between these two quality aspects. First, they aim a 
rifle at a target and clamp it in position. Then, by firing several times, they can measure the aver-
age deviation of the rounds from the target and adjust the sights so that the next rounds cluster 
centers on the target. This is called 'sighting in' a rifle. Marks-persons use the sights consistently 
to produce as small a cluster as possible. Once they see how rounds clusters deviate on average 
from the target, they adjust the aim to bring the center of the rounds pattern in line with the tar-
get. To improve accuracy, one must not tamper. Improving accuracy is only possible by holding 
the same aim for a group of rounds and, using the center of their resulting cluster, to estimate the 
deviation of the entire process of aiming, firing and the rifle and round functioning with the tar-
get. Adjusting the aim after each round makes things worse because of the variation endemic to 
the process. 
 Tampering can also cause many of the tragedies that people and organizations increasingly 
face. Remember the Tylenol Scare? That tampering nightmare (Beck et al. 1982) was just one of 
the tragedies that made Mitroff and Kilmann (1984) look at the threats governmental, industrial, 
educational and health-care organizations face today. Only to see that psychopathology, sabotage 
and terrorism have become commonplace. Despite federal anti-tampering laws, terrorists, sabo-
teurs and psychopaths continue committing such crimes, medical researchers fiddle with genes 
(August et al. 2002) and malicious troublemakers adjust, negate and remove pollution control 
equipment from factories and motor vehicles. To build wealth fast, managers too engage secretly 
or improperly in shady transactions and often meddle, mix up, rig and tinker with the very proc-
esses they are supposed to manage (Deming 2000a and b). 
 Look at Enron, for example. After a one-year old investigation, not one Enron manager has 
gone to jail (Dobbs 2002). Governments always tamper with the economy to talk up markets, but 
investors do not come back until they see real reforms, accountability and earnings. While ours, 
according to Dobbs (2002), "fails to assure them that is serious about choking off corporate 
fraud," the PricewaterhouseCoopers data show that, from 2000 to 2001, annual securities-
tampering litigation in USA increased by 240.3 percent (O'Connor 2002). 
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 Back to the funnel experiment. Compared to Rule 1 (no tampering), the feedback loop 
structure of tampering Rule 2 degrades the precision of the funnel experiment results. The de-
terministic feedback loop that Rule 2 adds to compensate for the last error from the (0, 0) target 
amplifies the randomness this negative feedback loop receives exogenously. The more the funnel 
moves from its last position, the more its x and y coordinate stocks accumulate, the more their 
accumulation causes dependence among consecutive marble drops, and thereby amplifies the 
common-cause variance associated with each marble drop. Accuracy is still high under tamper-
ing Rule 2 because the marble rest points' center does not deviate from the point of aim. 
 Compared to Rule 2, the feedback loop structure of tampering Rule 3 degrades precision 
even more than Rule 2 does. Hoping to hit the target more, Rule 3 adds a third deterministic 
feedback loop to the structure of the experiment to bring the funnel back to the target before 
compensating for the last error and thereby to prevent the funnel coordinate stocks from accumu-
lating. The rationale being that discarding the funnel's last position before compensating for the 
last error should eliminate dependence among consecutive marble drops owed to the funnel co-
ordinate accumulation. Erroneously, however, trying to reduce dependence due to funnel stock 
accumulation, the structure of tampering Rule 3 makes consecutive marble drops depend on each 
other even more than before and thereby degrades precision. The degradation is owed not only to 
a larger dispersion than that of Rule 1 but also to variance heterogeneity. Accuracy again is high 
under Rule 3 because the marble rest points' center does not deviate from the point of aim. 
 Compared to Rule 3, the feedback loop structure of tampering Rule 4 degrades not only 
precision but also accuracy. Hoping not to hit the target, but to cluster marble drops close to-
gether, Rule 4 turns the deterministic, negative feedback loop that Rule 2 adds into a reinforcing 
one. With the increased dependence of consecutive funnel moves, owed to preventing the funnel 
coordinates from accumulating, on the one hand, Rule 4 makes consecutive marble drops depend 
on each other even more than before. So, it reduces precision by causing both dispersion larger 
than that of Rule 1 and variance heterogeneity. On the other hand, rendering the funnel coordi-
nates memoryless, reinforcing randomness causes the marble rest points' center to build a bias 
away from the point of aim, implicitly changing the goal state of the funnel experiment system. 
 The tampering dynamics of Rule 4 resembles the situation that managers face when they 
muddle through. Led by logical incrementalism theorists, they too believe that strategic changes 
envisioned in the complexity theory literature are unrealistic. So, they simply sidestep the sys-
temic leverage analysis and synthesis necessary in strategy design. Anchored in system dynam-
ics, however, systemic leverage analysis and synthesis can help managers align multiple, system 
goal aiming tactics that mix action with communication in corporate-, business- and functional-
level strategy. 
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