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Abstract 
Three specific models of the acute inflammatory response were contrasted. The first model was a recently published 
and rather complex agent-based model used to simulate clinical trials in silico.  The second model was a highly 
simplified system dynamics model developed during the present research. The third model was also recently 
published, with similar objectives to the first model, but utilized a complex set of 18 differential equations.  The 
study found that the complexity of the first and third models is likely to adversely impact their usefulness, at least 
for other researchers.  The second model, which is too simple to be used for predictive purposes, shows potential 
promise as a pedagogical tool, and possibly as the foundation for a somewhat more realistic model that would still 
be much less complex than the other two models.  A comparison table contrasts the three models/methods in more 
detail.  The message for practitioners is one of caution--it is likely to take a considerable period of time to fully 
realize the potential promise of in silico methods such as those published recently. 
 
Problem statement and significance 
An exciting and relatively new research area is the use of agent based simulation (ABS) models 
and system dynamic (SD) or differential equation (DE) models to study complex biomedical 
phenomena such as the systemic inflammatory response syndrome (SIRS), the acute 
inflammatory response (AIR), and multiple organ failure (MOF) (Neugebauer 2001).   
 
SIRS is an important problem domain for several reasons (Buchman 1997, 2001).  First, it is 
considered one of the most significant and prevalent clinical problems in critical care medicine.  
Second, the phenomenon occurs at multiple system levels (molecular, cellular, tissue, and 
organ).  Third, the complex interactions between components preclude the attribution of the 
systemic response to any single factor or agent.  Fourth, there is a behavioral region in the case 
of infection where, even though the original infection may be eradicated by the immune system 
response and therapy, the collateral tissue damage results in system failure.  Finally, while much 
has been learned in recent years, SIRS remains a largely unsolved problem. 
 
While both ABS and SD/DE methods are considered by most researchers to be complementary 
and appropriate for studying problems such as SIRS, very little has been published that helps to 
delineate their relative strengths and weaknesses.  This manuscript is an initial study to critically 
evaluate salient differences between these two methods. 
 
Background and brief review of the literature 
 
It has been shown convincingly in the social sciences that ABS models are able to generate 
remarkably complex and unexpected macroscopic behaviors from agents that utilize very simple 
rules (c.f., Epstein and Axtell 1996, Gilbert and Troitzsch 1999, and Resnick 1994).  
Furthermore, it is generally accepted that the insights attributed to these simulations of social 
systems are profoundly different than the insights revealed using SD/DE and other methods. 
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However, it is not known whether this same distinction also holds in the biomedical domain.  
Are the insights revealed using ABS to model biomedical phenomena profoundly different than 
the insights one might obtain using SD/DE in this context?  In an earlier paper (Wakeland et al 
2004), both SD and ABS were used to study cellular receptor dynamics and the results from both 
methods were compared.  This research confirmed that the two paradigms are very different and 
possess unique strengths and weaknesses.  Guidelines were provided for assessing which of the 
two methods might be preferred in a given situation.  However, this research did not demonstrate 
important insights from ABS that in the authors’ estimation went beyond the insights that one 
might achieve with SD/DE.  That study acknowledged that the author’s prior knowledge of 
SD/DE modeling was much greater than their prior knowledge of ABS, and that the results may 
have been influenced by the order in which the methods were applied: first SD/DE, then ABS.  
 
One of the first studies to report the use of ABS to model SIRS/MOF was An (2001).  This paper 
synthesized a wide variety of basic science results into an overall model that illustrated the 
complex dynamics seen in the clinical environment.  The underlying processes (rules) were 
discussed in some detail, but the actual code was not provided.  In additional to parameter 
variation, the degree of randomness could also be varied. Many graphical results were presented, 
some of which showed the behavior over time for different cases, while others compared the 
results of multiple runs with parameters varied over a wide range, or with parameters fixed but 
with many different randomly generated cases.  The paper was organized in a fashion similar to a 
more typical basic science research paper in order to illustrate how an in silico model could be 
used in the much the same fashion as a traditional laboratory model. 
 
A recent issue Critical Care Medicine included two highly relevant papers on this topic (An 
2004, Clermont et al 2004) as well as a short editorial article (Marshall 2004) that contrasts in 
silico modeling with in vivo and in vitro research.  The editorial is both encouraging and 
cautionary, warning that the potential benefits of this new approach rest heavily upon the 
correctness of model algorithms and model data.  It asserts that ABS models have yet to prove 
themselves by predicting effects that were not previously known. 
 
(An 2004) extends the author’s earlier work, using the ABS model of SIRS to conduct in silico 
experiments that generally replicate the [disappointing] results of several large-scale clinical 
trials of cytokine-directed anti-mediator agents.  The author also evaluated several hypothetical 
clinical trials, and found that they too would be likely to not achieve statistically significant 
results.  He also showed how ABS models could be used to help design more effective clinical 
trials.  In addition to the graphical and tabular results, extensive model details were provided, 
including a website containing the actual model used to conduct the experiments. 
 
(Clermont et al 2004) developed a DE-based model to study immunomodulatory strategies for 
treating cases of severe sepsis.  Their focus was to assess the feasibility of using DE models to 
improve the design of clinical trials.  The model was used to simulate 1000 patients that were 
subjected to various simulated treatments.  The results were presented in much the same fashion 
as results would be presented from an actual clinical trial.  This research replicates in silico the 
general findings from actual clinical trials--that it is very difficult to design a treatment strategy 
that is effective over a broad range of sepsis patients.  The authors provide an appendix that gives 
the model equations and parameters. 
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Another recent publication of interest is Vodovotz et al (2004), which reviewed mathematical 
models of the acute inflammatory response.  This paper emphasized the need for non-
reductionist approaches, and featured results from both An (2004) and Clermont et al (2004).  
The paper also looked closely at the validation strategies used to assure the correctness of the 
model logic and model data. 
 
Research methodology 
 
Phase I.  The research began by examining the details of the ABS model developed by An (2004) 
and the Netlogo (2005) implementation of the model.  The model is quite complex, requiring 14 
pages of procedures.  There are 14 different “breeds” of agents, each of which has unique logic.  
Some minor differences were observed between the logic documented in the paper and the model 
provided on the web.  For example, the Appendix to the paper provided formulae indicating that 
certain model variables are divided by 2, whereas this was not the case in the actual model code.  
Also, in some cases, the dependent variables used to compute a given independent variable were 
different. 
 
A variety of experiments were run using the corrected Netlogo code, both to confirm the results 
and to learn as much as possible from the model.  Observing the graphical display during several 
short model runs indicated that most of the simulated tissue was either healthy or severely 
“damaged,” with a “sharp” boundary between the two regions.  This suggested that that the 
model could probably be scaled down without loss of utility.  The area of the modeled region 
was scaled down factor of 4.  Also, the number of “cases” per experiment was reduced from 100 
to 10, and the time per run reduced from 28 to 7 simulated days.  Other minor changes were also 
made, including modifying the logic so that the iteration number would not be incorrectly reset 
to zero and to force the initial infection to be automatically invoked for the first iteration instead 
of requiring the user to remember to push a particular button at the start of the run. 
 
Sufficient experiments were run to reproduce the results reported in Figure 1 of An (2004).  
These were run on multiple computers to reduce the total elapsed time.  The total elapsed 
computer time was nearly 30 hours.  The computers used included three laptops with processor 
speeds varying from .4 to 1.2 GHz.  The results clearly showed the Initial Injury (IIN) values that 
demark the lower and upper boundaries of the “region of interest” (ROI) described by An (2004). 
 
The next set of experiments required many more runs than the first set, so it was necessary to 
further optimize the model logic.  The primary changes were: 1) to reduce small values of 
biochemical agents to zero in order to lessen the number of calculations required in the diffusion 
process, 2) to move the “divide OXY by 100” from inside the SUM operation to outside the 
SUM, and 3) to calculate the SQRT function used in the injure-sterile and injure-infection 
procedures one time instead of calculating this function IIN times for each iteration.  These 
changes speeded up model execution by a more than a factor of two, dropping the computer time 
required to run the experiments from 70 to 30 hours. 
 
Procedures were also added to the model to make it easier to run experiments that incrementally 
removed the effect of individual model components and combinations of components.  These 
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experiments test the impact of removing T-cells and T-cells germinators from the model.  First, 
the five initial values associated with T-cells were set to zero, one at a time. Next, selected 
combinations of two or three initial values were set to zero simultaneously.  Finally, all five 
initial values were set to zero.  For each parameter set, 20 cases were simulated, for each of two 
different values of IIN.  The IIN values were chosen to reflect the lower and upper bound of the 
ROI where the uncertainty in outcome is the highest. 
 
The data collection procedures provided within the model by its developer (An 2004) were not 
enhanced.  This was a mistake, as it greatly increased the time required to analyze the data and 
format the results for presentation. 
 
Phase II.  In this phase, a highly simplified SD model was built that attempted to capture the 
essential feedback loops described in An (2001) and An (2004). The goal was to determine if a 
much simpler SD model could exhibit the same large-scale behavior as the more complex ABS 
model. Since the goal of the model was merely to exhibit qualitatively similar behaviors (such as 
tipping points in key state variables), no attempt was made to achieve quantitative similarity. The 
theory behind this type of exploration is that large-scale behavior derives more from the relations 
in the model than from the specific quantities. 
 
From model components described by An (2001 and 2004), a list of the most important variables 
in the model was created, and the key interactions between variables were identified. This initial 
list contained nine items and fourteen interrelationships. A causal loop diagram (CLD) was used 
to graphically depict these relationships. Each relationship in the CLD was marked either “+” for 
positive (reinforcing) influence or “–” for a negative (balancing) influence. The CLD made it 
much simpler to identify positive and negative feedback loops, which are often the main drivers 
behind the behavior of a model.  The CLD in this case contained several positive and negative 
feedback loops.  The presence of intermingled positive and negative feedback loops indicated 
that one or more tipping points are likely to be found in the dynamic behavior of the system.  A 
tipping point occurs when a dominant reinforcing effect gives way to a balancing effect or vice 
versa. 
 
The CLD was used to develop an SD model, which was implemented using the Stella (2005) 
software program. During its implementation, the model was every further simplified. The 
numbers of injured epithelial cells and infectious agents were implemented as the two “stocks” 
(integrals, or state variables) in the model. The numbers of neutrophils and mononuclear cells 
were modeled as fixed initial conditions, and two of the other variables were removed because 
they could be derived from the other values and did not participate directly in the feedback loop 
structure.  This model was used to explore the relationships between key variables and the initial 
values of the state variables and constants.  This was easy to accomplish due to the simple 
structure of the model. 
 
Phase III.  We then studied the DE model published by Clermont et al (2004), including an 
attempt to independently reproduce the results by implementing the equations and parameters 
provided in the appendix of the paper. While this seemed a straightforward task, the complexity 
of the model made it somewhat daunting. We entered into Matlab (2005) the 18 differential 
equations, five functions and more than 80 constants as indicated. A few minor typographical 
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errors and omitted values were corrected as seemed most reasonable, but the researcher’s were 
not confident that their implementation was 100% correct. We then attempted to perform 
experiments with the model by specifying values for the 11 floating parameters, and using 
Matlab to solve the resulting equations. 
 
Phase IV.  The final phase of the research compared and contrasted the results of the prior 
phases.  This comparison was both subjective, and, to the extent possible, based on objective 
data.  This type of research design is appropriate for exploratory research aimed at producing 
suggestive rather than definitive results. 
 
Results 
 
Phase I Results.  Figure 1 shows the initial experimental results using the ABS model.  The x-
axis indicates the initial injury number IIN, from 0 to 1000.  For each value of IIN two points are 
shown, the end infection (EIN) and the end oxygen deficit (EOD), where end refers to the end of 
the simulation run (considered to be one week after the initial injury/infection in our case vs. four 
weeks used by An).  Each point represents the result from one of the 10 simulated cases.  The 
mean values for each of these 10 cases is also shown, in a larger font, with line segments 
connecting these points.  When IIN is small, both the mean EOD and mean EIN are also small, 
indicating a favorable prognosis.  When IIN is very large, both EOD and EIN are large, 
indicating an almost certain unfavorable outcome.  An [2004] describes the center region of 
Figure 1 as the “region of interest,” where EIN is small, but EOD remains large.  In this region, 
the autoimmune response has ameliorated the injury/infection, but tissues were damaged in the 
process and appear not to be able to recover. 
 
Figure 2 shows the results of the second set of experiments, where parameters associated with T-
cell were varied significantly, essentially “turning off” their pro-inflammatory and/or anti- 
 

 
 
Figure 1: Reproduction of the “Zone of Interest” (An 04). The left hand curve shows the mean value of end oxygen 
deficit for each given value of Initial Injury (IIN).  Each mean value is calculated from 10 cases (runs) for each 
particular value of IIN.  The individual values for each case are also shown as a scatterplot.  The right hand curve is 
similar, but shows the end injury number (EIN) for the corresponding IIN values. The region of interest is between 
the two curves. 
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inflammatory effects.  Twenty cases are run for each set of parameter values.  Figure 2A shows 
EOD when IIN = 150, near the left hand boundary of the region of interest (see Figure 1).  Figure 
2B shows EIN when IIN = 700, which is near the right hand boundary of the region of interest.  
One might expect that the pattern of outcomes in terms of EOD and EIN would be correlated to 
some degree with which set of parameters was used.  However, as can be seen in Figure 2, the 
overall impact of these particular processes is essentially “lost in the noise,” since the variation in 
the results for a given set of parameter values is much larger than the variation between different 
sets of parameter values. Note that when IIN = 150, EIN is near the minimum in all cases, and 
when IIN = 700 EOD is at the maximum in all cases; hence these graphs are not shown. 
 

 
Figure 2. Graph A shows the end oxygen deficit (EOD) and graph B shows the end injury number (EIN) for each of 
14 different sets of parameter values.  20 simulated cases is shown for each parameter set and for each of the two 
values for initial injury (IIN).    
 
One primary subjective result from phase I was the sense that the ABS model may be 
unnecessarily complex.  The fact that it takes many hours or even days to run a set of 
experiments limits the practical utility of such a model.  The high degree of complexity also 
makes it difficult to assure that the logic matches the modeler’s intent, much less reality.  On the 
other hand, a major strength of the ABS model is that is shows exactly how the researcher 
believes that the various mechanisms actually work.  This is excellent. 
 
Phase II Results.  The SD model is shown in Figure 3. Feedback loops include: a positive loop 
for the creation of infectious agents (IAs); a negative loop for the activation of mononuclear cells 
(MNCs) by injured epithelial cells (ECs); a positive loop between neutrophil (PMN) respiratory 
bursts and injured ECs; a negative loop between PMN bursts and IAs; another negative loop 
including PMN bursts, IAs and EC injuries; a positive loop around PMN bursts and EC injuries; 
and a positive loop from PMN bursts to EC injuries to MNC activations. The output of a sample 
run shows IAs falling, while also causing a rise in injured ECs. The number of injured ECs 
begins to fall once the infection is under control, and, eventually, all the ECs are healed. 
 
The equations used in this model are very simple. MNC activations are the sum of injured ECs 
and infectious agents, limited by the number of MNCs. PMN respiratory bursts are calculated the  
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Figure 3. The SD model is shown on the left, and the result of a typical run is shown on the right. 
 
same way, also including MNC activations in the sum, with a scaling constant applied. The 
inflow of EC injuries is the sum of the PMN bursts and IAs, with scaling constants to make IAs 
more injurious than PMN bursts. The outflow of injured ECs equals MNC activations, and the 
outflow of IAs equals PMN bursts. Finally, the inflow of IAs is 0.1 times the current population, 
as a modest growth rate. The scaling factors and initial conditions are all arbitrary and without 
units, chosen only to give relative weights to the relations in the model. 
 
We ran a series of experiments with the model while varying the initial numbers of IAs. The 
results of these runs are shown in Figure 4. Each simulation was run the same length of time, 
 

 
Figure 4: The region of interest as portrayed by the SD model. The model was run for a set length of time while 
varying the initial infection. The “zone of interest” is in the middle where the system may fail even though the 
infection is cured.  
 
the amount of initial EC injury was set to zero, and the numbers of IAs and injured ECs were 
capped at an arbitrary maximum representing system failure or total infection. The graph shows 
small infections that are easily healed on the left, large infections that overwhelm the system on 
the right, and the region of interest (ROI) in the middle, where system failure can occur even if 
the infection is cured. In this region, the injury to ECs from infection and PMN bursts is too great 
for the MNC to heal, even after the infection has been controlled. 
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The process of creating this SD model demonstrated that the important, large-scale behavior of a 
system could be captured in a very simple model. While the current SD model may not represent 
physiological reality, and would be of little use in a clinical setting, it would definitely seem to 
have potential use as a tool for understanding and exploration. The model is visually informative, 
and could be relatively easily understood by non-modelers. It could also serve as a starting point 
for further refinements, such as converting the variables to use realistic units or adding additional 
relations in order to represent physiological reality. However, such efforts to extend the model 
would be likely to come at the expense of usability and understanding. 
 
Phase III Results.  We sought to replicate the results of the DE model in order to explore and 
understand it, and also to gather results that could be compared with the other two models. We 
made some progress in the former goal, but not the latter. The sheer complexity of the model, 
coupled with our lack of knowledge on the reasoning behind it, made it very difficult to fully 
understand it. The model definitely seems very rational and well structured, and clearly much 
effort had gone into making it physiologically realistic. 
 
When we tried to run experiments with the DE model, we found that we were unable to get 
useful results. Part of the problem was technical, as we had difficulty solving the equations in 
Matlab. We did not know what solver best fit the problem. Nor did we know the appropriate time 
step or error tolerance, and so on. When we did find a solver that appeared to work, we were not 
sure how to interpret the results, or even if we could trust them, given the assumptions we made 
while implementing the model. So, even in a case where the researchers had done an exemplary 
job of documenting a very complex model, we were still unable to replicate their results. We did 
not contact the researchers for help, and our comments are not intended to in any way impugn 
their work. 
 
Summary of the Results.  Table I summarizes the results from each phase of the research by 
contrasting each of the models in terms of relevant characteristics such as the number of 
variables utilized, computational requirements, etc. 
 
Table I. Summary comparison of the three models 
 
Characteristic The ABS model The SD model The DE model 
Variables in the model  2 state variables 

2 varied parameters
5 constants 

18 state variables
11 varied parameters
80+ constants 

Computational 
requirements 

High Low High 

Time to run a non-trivial 
set of experiments 

Days Hours Hours to days 

Technical skills required to 
operate the model 

Medium Low High 

Degree of physiological 
realism 

Medium Low High 

Potential understandability 
to clinicians 

High High Low 

Ability to replicate results Medium High Low 
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Discussion 
 
This study indicates that the differences in the three models evaluated—an agent based 
simulation model, a system dynamics model, and a differential equation-based model—are quite 
significant.  Despite these differences, the methods do seem to be complementary, as had been 
suggested by others.  For example, the descriptions of the interactions between agents in the 
ABS model suggested the feedback loops used to formulate the SD model.  Further, there is a 
strong correspondence between the different classes of agents in the ABS model and the state 
variables used in the DE model. 
 
Challenges in the present study included the high degree of complexity in both the ABS and the 
DE models.  This complexity made it very difficult to achieve a high degree of confidence that 
the model logic/equations/parameters were correctly implemented.  The ABS and DE models 
provided by the original researchers both contained errors or other types of discrepancies, from 
missing parentheses to equations with entirely different terms.  Correcting these inconsistencies 
took time away from the primary research activities.  The high degree of complexity also 
dramatically increased the time required to run experiments with the ABS model and the DE 
model.  The complexity of the DE model necessitated considerable experimentation with 
different integration algorithms before credible results were achieved. 
 
The system dynamics model on the other hand, is probably too simple to be taken seriously by 
researchers, despite the fact that it too demonstrates the fundamental behavior modes observed 
clinically.  Thus, its simplicity is at once its greatest weakness and its greatest strength.  Because 
the logic is simple, it is possible to show exactly why each of the behavior modes occurs and 
what is required to move the system from one behavior model to the other. 
 
The primary conclusion is that each of these different types of models is very promising and 
warrants further study.  However, every effort should be made to find ways to reduce the 
complexity of the models.  The present research suggests that both the ABS model and the DE 
model are likely to contain non-essential components.  The problem with this is not simply that 
the models contain logic or variable that are superfluous and can be ignored. Rather, these 
additional components are a liability because they obscure important relationships and make it 
much more difficult for other researchers to confirm and/or extend the research. 
 
The implications for clinical practice are cautionary.  The parameter changes tested using the 
ABS model could have easily represented the potential impact of a pharmacological intervention.  
The research demonstrated that the impact of other variations appear to almost entirely mask the 
potential impact of this type of targeted intervention.  While the idea of in silico clinical trials is 
very intriguing, much more research is called for. 
 
The present study was exploratory in nature, and focused on just one example ABS model, one 
SD model, and one example DE model.  Consequently, these findings are only suggestive in 
nature; further examination of multiple examples from multiple modeling disciplines is 
warranted. 
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Two specific opportunities for further research are suggested by the present research.  First, the 
fact that the ultra-simplified SD model was able to produce the three key behavior modes 
indicates that perhaps a somewhat more complex SD model could be developed by borrowing 
key equations and interactions from the much more complex DE model.  Second, the fact that 
significant parts of the ABS model could be neutralized with only minimal impact on its 
behavior indicates that it might be possible to create a simplified version of this model without 
an appreciable loss in behavioral fidelity. 
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