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Abstract 
In the present paper we describe a new Artificial Intelligence method of system modeling that utilises causal 
knowledge extracted from different texts. The equations describing the system model are solved with a Prolog 
program which receives data such as values for its parameters from the text analysis subsystem. The knowledge 
extraction from the texts is based on the use of our knowledge representation independent method ARISTA that 
accomplishes causal reasoning directly from text. Our final aim is to be able to model biomedical systems by 
integrating partial knowledge extracted from a number of different texts and give the user a facility for 
questioning these models. The model based question answering we are aiming at may support both biomedical 
researchers and medical practitioners.  
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1. Introduction 
 
In our paper [Kontos (2002)] a method was proposed for supporting the discovery of causal 
knowledge by finding causal sentences from a text and chaining them by the operation of our system 
ACkdt (ARISTA Causal knowledge discovery from texts) with which we implemented the method. 
The operation of the method relies on the search for sentences containing appropriate natural language 
phrases.  
Our knowledge discovery method is based on the use of our knowledge representation independent 
method ARISTA that accomplishes causal reasoning “on the fly” directly from text [Kontos (1992)], 
[Kontos (1999)]. The causal knowledge discovered from texts forms the basis for modeling systems 
whose study is reported in the analyzed text.  In the present paper we describe a new method of system 
modeling that utilizes causal knowledge extracted from different texts. The equations describing the 
system model are solved with a Prolog program which receives values for its parameters from the text 
analysis subsystem.  
In the present paper we propose that causal knowledge discovered from texts forms the basis for 
modeling systems whose study is reported in texts analysed by our system and we describe a new 
Artificial Intelligence method of system modeling that utilises causal knowledge extracted from 
different texts. The equations describing the system model are solved with a Prolog program which 
receives values for its parameters from the text analysis system. We are thus aiming at automating part 
of the cognitive process of model discovery based on experimental data but supported by domain 
knowledge extracted automatically from scientific texts.   
The extended system AROMA (ARISTA Oriented Model Adaptation) presented in the present paper 
consists of three subsystems. The first subsystem achieves the extraction of knowledge from 
individual sentences of different texts that is similar to traditional information extraction from texts. 
The second subsystem is based on a reasoning process that generates new knowledge by combining 
“on the fly” knowledge extracted by the first subsystem. Part of the knowledge generated is used as 
parametric input to the third subsystem and controls the model adaptation. The third subsystem is 
based on a system modeling Prolog program that is used to generate time dependent numerical values 
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that are compared with experimental data. Our system differs from the proposal of [Langley (2002)] 
where models are discovered from numerical data of system behavior.  

Our final aim is to be able to model biomedical systems by integrating partial knowledge extracted 
automatically from a number of different texts and providing a facility for a user to pose questions and 
automatically get answers concerning these dynamic models.  
 
 
2. System Model Discovery 
 
There exists some research on computational methods for the application of inductive learning 
methods in discovery of new knowledge of system models. However the models induced by such 
methods usually make little contact with the formalisms and concepts used by scientists and engineers. 
Experts in some domains may reject output of a learning system, even when very accurate, unless it 
makes contact with their prior knowledge. In contrast, models in science and engineering often 
provide an explanation which includes variables, objects, or mechanisms that are unobserved, but that 
help predict the behavior of observed variables. Moreover, explanations often make use of general 
concepts or relations that occur in different models. 

We will focus here on a particular class of system models consisting of processes that describe one 
or more causal relations between input variables and output variables. A process states these relations 
in terms of differential equations when it involves change over time or algebraic equations when it 
involves instantaneous effects. A process may also include conditions, stated as threshold tests on its 
input variables, that describe when it is active. A process model consists of a set of processes that link 
observable input variables with observable output variables, possibly through unobserved theoretical 
terms. The concept of process is fundamental to our original early proposal of the ARISTA method in 
[Kontos (1992)].  

Process models are often designed to characterize the behavior of dynamical systems that change 
over time, though they can also handle systems in equilibrium. The data produced by such systems 
differ from those that arise in most induction tasks in a variety of ways. First, these variables are 
primarily continuous, since they represent quantitative measurements of the system under study. 
Second, the observed values are not independently and identically distributed, since those observed at 
later time steps depend on those measured earlier. Finally, the training data are primarily 
unsupervised, in that they describe a set of variables that change over time, with no variable being 
singled out for special attention.  

Another assumption that we use makes process model induction more tractable. The dynamical 
systems explained by our models are viewed as deterministic. The observations themselves may well 
contain noise but we assume that the processes themselves are always active whenever their conditions 
are met and that their equations have the same form all the time. We use this assumption because 
scientists and engineers often treat the systems they study as deterministic. 
 
 
3. System Description 
 
The general architecture of our system is shown in Figure 1 and consists of the three subsystems 
namely the Knowledge Extraction Subsystem, the Causal Reasoning Subsystem and the Simulation 
Subsystem. These subsystems are briefly described below and their operation is illustrated by two 
examples that follow. 
 
The texts of the example applications presented below are compiled from the MEDLINE abstracts of 
papers used by [Bar-Or (2000)] as references that amount to 73 items. Most of these papers are used in 
[Bar-Or (2000)] to support the discovery of a quantitative model of protein concentration oscillations 
related to cell apoptosis constructed as a set of differential equations. We are aiming at automating part 
of such a cognitive process by our AROMA system. This collection of the MEDLINE abstracts is 
processed by a preprocessor module so that they take the form required by our Prolog programs i.e. 
one sentence per line.  
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3.1 The Knowledge Extraction Subsystem 
 
This subsystem integrates partial causal knowledge extracted from a number of different texts. This 
knowledge is expressed in natural language using causal verbs such as “regulate”, “enhance” and 
“inhibit”. These verbs usually take as arguments entities such as protein names and gene names that 
occur in the biomedical texts that we use. In this way causal relation between the entities are 
expressed.  

The input files used for this subsystem contain abstracts downloaded from MEDLINE. A special 
lexicon containing words such as causal verbs and stopwords are also input to this subsystem. An 
output file is produced by the system that contains parts of sentences collected from the original 
sentences of different abstracts. These output file is used for reasoning by the second subsystem.   

The operation of the subsystem is based on the recognition of a causal verb or verb group. After this 
recognition complements of the verbs are chunked by processing the neighboring left and right context 
of the verb. This is accomplished by using a number of stopwords such as conjunctions and relative 
pronouns. The input texts are submitted first to a preprocessing module of the subsystem that converts 
automatically each sentence into a form consisting of Prolog facts that represent numerically 
information concerning the identification of the sentence that contains the word and its position in the 
sentence.           
 
 
 
 
3.2 The Causal Reasoning Subsystem 
 
The output of the first subsystem is used as input to the second subsystem that combines causal 
knowledge in natural language form to produce automatically conclusions not mentioned explicitly in 
the input text. The operation of this subsystem is based on the ARISTA method [Kontos (1992)]. The 
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sentence fragments containing causal knowledge are parsed and the entity-process pairs are 
recognized. The user questions are analysed and reasoning goals are extracted from them. The 
qualitative answers to the user questions are generated automatically by a reasoning process together 
with explanations in natural language form. This is accomplished by the chaining on the fly of causal 
statements using prerequisite knowledge such as ontology to support the reasoning process. A second 
output of this subsystem consists of both qualitative and quantitative information that is input to the 
third subsystem and controls the adaptation of the model of the biomedical system.    
 
3.3 The Simulation Subsystem 
 
The third subsystem is used for modeling in a semi-qualitative way the dynamics of the biomedical 
system discovered on the basis of the MEDLINE abstracts processed by the first subsystem. The 
characteristics of the model such as structure and parameter values will eventually be extracted from 
the input texts combined with prerequisite knowledge such as ontology and default process and entity 
knowledge. Considering the illustrative examples presented below two coupled first order differential 
equations are used as the mathematical  model of the biomedical system in rough correspondence with 
the model proposed in [Bar-Or (2000)]. A basic characteristic of the behaviour of such a system is the 
occurrence of oscillations for certain values of the parameters of the equations. 
 
The equations in finite difference form that approximate the differential equations are:  
 
∆x= a1*x + b1*y + c1*x*y (1) 
∆y= a2*y + b2*delay(d,x) (2) 
 
Where ∆x means the difference between the value of the variable x at the present time instant and the 
value of the variable x at the next time instant. The function delay(d,x) computes the value of x before 
d units of time. Time is taken to advance in discrete steps.  

The variables x and y correspond to the concentrations of the proteins p53 and mdm2 respectively. 
The symbols a1, b1, c1, a2, b2 stand for the parameters of the equations. It is noted that multiplicative 
term c1*x*y renders equation (1) non-linear. This non-linearity causes the appearance of the 
oscillations to differ from simple sine waves. The solution of these equations is accomplished with a 
Prolog program that eventually will provide an interface for manipulation of the model by the user. 
This manipulation will be based on the analysis of the experimental data and their comparison with the 
simulator output. 
 
 
4. A Model Based Question Answering Example 
 
An illustrative subset of sentences used in this first illustrative example is the following where the 
reference numbers of the papers with which the authors of [Bar-Or (2000)] refer to are given in 
parentheses:  
 
The p53 protein is activated by DNA damage. (23) 
Expression of Mdm2 is regulated by p53. (32) 
Mdm2 increase inhibits p53 activity. (17) 
 
Using these sentences our system discovers automatically the qualitative causal process model with a 
negative feedback loop that can be summarized as: 
 
DNA damage +causes p53 +causes  mdm2 -causes p53 
 
Where +causes means “causes increase” and -causes means “causes decrease or inhibition” 
 
by answering the question: 
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Is there a process loop of p53? 
 
This question is internally represented as the Prolog goal: “cause(P1,p53,P2,p53,S)”, where P1 and P2 
are two process names that the system extracts from the texts and characterize the behaviour of p53. S 
stands for the overall effect of the feedback loop found i.e. whether it is a positive or a negative 
feedback loop. In this case S is found equal to “-” or “negative” since a positive causal connection is 
followed by a negative one.  
     
The short answer automatically generated by our system is: 
 
Yes. 
The loop is p53 activity –causes p53 production. 
 
The long answer automatically generated by our system is: 
 
Using sentence 17 with inference rule IR4  
 
since the DEFAULT process of p53 is <production> 
 
using sentence 32 
 
the EXPLANATION is: 
 
since <increase> is equivalent to <expression> 
 
p53 production –causes activity of p53 
because 
p53 production +causes expression of Mdm2 
and 
increase of Mdm2 –causes activity of p53    
 
It should be noted that the combination of sentences (17) and (32) in a causal chain that forms a closed 
negative feedback loop is based on two facts of prerequisite ontological knowledge.  
 
This knowledge is inserted manually in our system as Prolog facts and can be stated as:  
 
“the DEFAULT process of p53 is ‘production’” or  
in Prolog: “default(p53,production).”.    
 
“the process ‘increase’ is equivalent to the process ‘expression’” or 
in Prolog “equivalent(increase,expression).”. 
 
The above analysis of the text fragments of the first example is partially based on the following 
prerequisite knowledge which is also manually inserted as Prolog facts:  
 
 
kind_of(“the”,“determiner”) 
kind_of(“is”,“copula”)  
kind_of(“of”,“preposition”)  
 
kind_of(“p53”,“entity_noun”)  
kind_of(“protein”,“entity_noun”)  
kind_of(“DNA”,“entity_noun”) 
kind_of(“Mdm2”,“entity_noun”)  
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kind_of(“activated”,“causal_connector”)  
kind_of(“inhibits”,“causal_connector”)  
kind_of(“regulated”,“causal_connector”)   
 
kind_of(“damage”,“process”) 
kind_of(“expression”,“process”)  
kind_of(“increase”,“process”)  
kind_of(“activity”,“process”) 
 
The above prerequisite knowledge base fragment contains both general linguistic and domain 
dependent ontological knowledge about the words occurring in the corpus. In practice of course these 
two parts of knowledge are and handled differently by the inference rules of the reasoning module.  
  
5. A Second  Example   
 
The second example text is also compiled from two MEDLINE abstracts of papers used by [Bar-Or 
(2000)] as references. These two abstracts downloaded from MEDLINE again contain knowledge 
concerning the interaction of the proteins p53 and mdm2. These proteins are involved in the life cycle 
of the cell. The first abstract originates from [Wu (1993)] and the second from [Momand (1992)].  
 
The first abstract consists of six sentences from which two are selected by the first subsystem from 
which the following fragments are extracted automatically. 
 
“The p53 protein regulates the mdm2 gene”“regulates both the activity of the p53 protein” 
 
These fragments are then automatically transformed as Prolog facts in order to be processed by the 
second subsystem as shown below: 
  
t(“325”, “The p53 protein regulates the mdm2 gene”).  
t(“326”, “regulates both the activity of the p53 protein”). 
 
The numbers 325 and 326 denote that these fragments are extracted from the sentences 5 and 6 of the 
text 32.  
 
The second abstract consists of seven sentences from which two are selected by the first subsystem 
from which the following fragments are extracted automatically  
 
“The mdm2 gene enhances the tumorigenic potential of cells”  
“The mdm2 oncogene can inhibit p53_mediated transactivation” 
 
 
and expressed in the form of  Prolog facts as: 
 
t(“923”, “The mdm2 gene enhances the tumorigenic potential of cells”). 
t(“927”, “The mdm2 oncogene can inhibit p53_mediated transactivation”). 
 
Using the sentences of the second example our system discovers the causal negative feedback loop: 
 
 p53 +causes  mdm2 -causes p53 
 
Where +causes means “causes increase” and -causes means “causes decrease or inhibition” 
 
by answering the question: 
 
Is there a process loop of p53? 

 6 



 
This question is internally represented as the Prolog goal:  
 
“cause(P1,p53,P2,p53,S)”  
 
where P1 and P2 are two process names that the system extracts from the texts and characterize the 
behavior of p53. S stands for the overall effect of the feedback loop found i.e. whether it is a positive 
or a negative feedback loop. In this case S is found equal to “-” since a positive causal connection is 
followed by a negative one.  
     
The short answer automatically generated by our system is: 
 
Yes. 
The loop is p53 activity –causes p53 production. 
 
The long answer automatically generated by our system is: 
 
the QUESTION is: 
 
Get process loop of p53 
 
OR 
 
*cause(P1,p53,P2,p53,S)* 
 
USING INFERENCE RULE IR4a 
 
since the DEFAULT entity of <p53_mediated> is <p53> 
 
USING sentence 927 with inference rule IR4 
 
USING INFERENCE RULE IR4b 
 
USING sentence 325 
 
the EXPLANATION is: 
 
since <oncogene> is a kind of <gene> 
 
p53 protein -causes p53 
 
because 
 
p53 protein +causes gene of mdm2 
 
and 
oncogene of mdm2 -causes p53_mediatedtransactivation of p53 
 
It should be noted that the combination of sentences (92) and (32) in a causal chain that forms a closed 
negative feedback loop is based on two facts of prerequisite ontological knowledge.  
 
This knowledge is inserted manually in our system as Prolog facts and can be stated as:  
the DEFAULT entity of <p53_mediated> is <p53> or default(p53_mediated, p53). 
<oncogene> is a kind of <gene> or kind_of(oncogene, gene). 
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7. Conclusions 
 
We presented our system for supporting the discovery of qualitative and quantitative dynamic models 
of biomedical systems using domain knowledge extracted automatically from texts as an alternative 
approach to the one of constructing models from numerical data and formally encoded domain 
knowledge.  

The system we are developing consists of three main subsystems. The first subsystem achieves the 
extraction of knowledge from individual sentences that is similar to traditional information extraction 
from texts. The second subsystem is based on a reasoning process that generates new knowledge by 
combining “on the fly” knowledge extracted by the first subsystem. The third subsystem is based on a 
numerical system simulator written in Prolog. 

Our final aim is to be able to model biomedical systems by integrating partial knowledge extracted 
from a number of different texts and give the user a facility for questioning these models during a 
collaborative man-machine model discovery or diagnostic procedure. The model based question 
answering we are aiming at may support both biomedical researchers and medical practitioners.       
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