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1. Dynamical systems: mechanical approach versus
teleological approach.

Dynamical system: a system of coupled first order differential
equations

. ) q;(t) = f;(t,q) 1=1,2,...,n.

]

Mechanical approach: mathematical representation of the causal
relations among the system variables.

Teleological approach: can the system follow a trajectory given by
an objective? = Yes: the system trajectory is that one that minimizes

the Action S(t):
Ly

S(t) = f L(t,q,q) dt L(t, q,q): Lagrangian function



2. The Lagrangian approach: the Havas approach.

)

S(t) = fL(t q,q) dt “ () = fi(t, @) i=1,2,.

Lty
How to become equivalent both formulations?

If S(t) must be minimum ==) §5(¢) = 0

|

d (oL _oL_ . .
dt\aq;) oaq, =~ ool

Lagrange Equations

, _ . This is the so-called as:
q:(t) = fi(t,q@) J=L,2, ... | agrange inverse problem



2. The Lagrangian approach: the Havas approach.

d [ 0L oL Lagrange inverse problem
77 (aq-) — — = (0 eee———)  §;(t) = f;(t,q)
J

Lagrange Equations Differential system

P. Havas solution (1973)

(convention of the repeated subscripts N\ — s
assumed as a sum from now L(t' q' q) — gk (t' q) qk V(t, q)

onwards d (0L oL
) [ o) i~
Fij (t,q) c'[j = — a'gifgt' D — aVa(t, 9 Vector field equations
t qi
such that:

99i(t,q) 0gi(t, q) F;; antisymetric matrix
aC[j aqj

Fi;i(t,q) =



2. The Lagrangian approach: the Havas approach.

Lagrange inverse

09t ) V) PO o fa)

Fij(t,q) q; =

ot aql o |
Vector field equations Differential system
| (Even n or (Odd n or
regular case) singular case)

det(Fl-j (t, CI)) =0

det(Fij(t, q)) + 0 —

(add one
l equation and
dg:(t.a) IVt q) variable)
Fij(t,q) f;(t, @) = — glat’ -—
i 4 = fit, @ }
l Qn+1(t) = fn+1(tr CI)

0Fi(t,q) 0 0

F;;(t, q) matrix field equations




2. The Lagrangian approach: the Havas approach.

Summarizing the Havas approach:

1. Add a new equation g,,,1(t) = f,+1(t, q, g+1) 10 (1) if the dimension n
IS odd.

2. Solve the F;;(t, q) functions by:
OFi(t, ) )
LD = 2 (Fy (e ) £ @) = 50 (Fiy (6 @) £ @)

dgi(t.q) 0dgi(t.q)
GQj OQj

3. Solve the g;(t, q) functions by: F;;(t,q) =

_3gi(te) V(L)
ot d0q;

4. Solve the V (¢, q) function by: F;;(¢,q) ¢; =

5. The Lagrangian is given by: L(t,q,q) = gx(t,q) 4, — V(¢t, q)

Note: in those cases where the F;;, g; and V functions do not depend
explicitly on the time, the steps 3 and 4 can be exchanged.



3. The Hamiltonian approach: the Dirac approach.

Momenta _ _ .
Hamiltonian function

dL(t, q,¢ : :
_ 9L _q) ) H(t,q,p) =pjq; —L(t,q,q)

Pj 0 ﬂ

_0H(t,q,p) )

Hamilton equations: 4 dp;
equivalent to Lagrange equations OH(t,q,p) '
T e

Present case: L(t,q,q) = gx(t,q) G, —V(t,q)

@= pj =9;(t q)
H(t,q,p) =V(t,q)
Problem!! =) The Hamiltonian do not depend on momenta




3. The Hamiltonian approach: the Dirac approach.
The Dirac approach (Paul A. M. Dirac,1964):

1. Define the primary constraints: ¢,,,(t,q,p) = v, — gm(t,q) =0

2. Insert them in the Hamiltonian:
HT(tJ qr p) — V(t' q) + Am(t: q' p) d)m(t) q; p)

Am(t,q, p) mmmmm) unknown multiplying functions to be found

3. Hamilton equations for H:

dH;(t,q,p) )
g o, i(t,q,p) |
dH7(t,q,p) av(t,q) 0gm(t, q)



3. The Hamiltonian approach: the Dirac approach.

4., State the consistency conditions for the primary constants ¢,,, :

dd.(t,q,p) +0¢z(t, q.p). J0¢,(tq,p)

1 « Hamilton equations
Fr..(t,q) A,,(t,q,p) = — —
m(t, q) Am(t, q,P) 5 90,
Follow No approach followed
Havas
approach i 1
det(F;;(t,q)) # 0 ¢ Evenn Odd n
1 An(t,q,P) = fi(t, q)

. But some either some g,(t, q) functions or
Am(t, @, P) = fn(t, q) V(t, q) function are undetermined



3. The Hamiltonian approach: the Dirac approach.

5. Hamiltonian:  Hr(t,q,p)

— V(t» CI) + fm(t' q)(pm - gm(t: q))
6. If g;(q) and V(q) independent on time and the system is

autonomous, i.e., f,,(q), the system Energy E can be stated
as a motion constant:

E=V(q) + fm(@)(Pm — 9m(q))

/. Hamilton-Jacobi equation:  S(t,q) ===== Action

aS(t,q) aS(t,q)
5 T fm(t,q) ( 30

— gm (L, q)) +V(t,q) =0

This equation is very important to interpret the quantum approach



4. Application to the one-dimensional autonomous
systems.
qt) =f(t,q) » - q(t) = f(q)

Autonomous

Havas approach:

q,(t) = f1(CI1)} == q(t) = f(q)
g2 (t) = f2(q1) == Arbitrary f,

From the simplifying hypotheses that g;(q) and V(q)
are independent on time :

f2(q1)
Oy e ()

. . q2—J dqq
g, +€e%2 g, —€ f1(q1)
f1(q1)

L(q) =

E =H(q,p) = fi(q) p1 + f2(q1) p2 — f2(q1) €72
ﬂ : q.(t) = f2(q1) = 1,ie,q; = ¢
E=H(q,p) = fi(q) p1 + p, — €%




4. Application to the one-dimensional autonomous
systems.

Dirac approach to: g(t) = f(t,q)
Hr(t,q,p) =V(t,q) + A(t,q,p) ¢(t,q,p) ¢(t.q,p) =p—g(t,q)
Consistency condition: g - 29(t.a) , V(L) _\ problem: A(t,q, p)

Jt dq IS not present

. _0g(t,q) 0V(tq)
Secondary constraint: ~ x(t.q,p) = ———+ 3 =0

!

Consistency condition:  y(t,q,p) =0

d%g(t,q) 9°V(t,q) 0%g(t,q) 0°V(t,q)
oz T araq OO\ a0 T ez )T



4. Application to the one-dimensional autonomous
systems.
qt) =f(t,q) » - q(t) = f(q)

Autonomous

From the simplifying hypotheses that g,(q) and V(q)
are independent on time, the consistency condition becomes:

f@Vi(p =0

!

E=Hr(qp)=f(@p+kq— f(q) g(q)

The system energy is undetermined by the g(q) function



5. Thermodynamics interpretation of the analytical
formalism.

Consider the autonomous system:  g;(t) = f;(q)
The Hamiltonian is:

Hr(t,q,p) = Z fk@p tV(tq) — ) fr(q@) gk(t,q)
k k

Develop f; (q) about an atractor q, ﬁ « fl@) = ZAki(qi — 4i0) + Fi(q)

Hr(t,q,p) = Z Ak gk px + Z Akiqi Pk — z AkiQiq D + Z F.(q) px +V(t,q) — ka(CI) gx(t,q)
% X X

k=i ki

Identify H; with the thermodynamic Euler equation:

T the temperature and £ the entropy

U=TQ+ Y X Y, as extensive variables and X,, as intensive variables

Identification: Y, 2 Ay, v, and X; =2 gy

Identification: TQ = ¥..; Awi Prqi — Yoki Aribia Pr + 2ok Fe (@ i + V(& @) — Yk £ (@ 9i (8, @)



