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There is no space in Euclid’s Geometry 

A Geometry of figures, handled by ruler 
and compass, 

No mathematics of plane (“apeiron”) 
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Lo spazio in Giotto, Scrovegni, Padova, 1300 



Lo spazio in Giotto, Assisi, 1297-1300 
. 
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Le débat metaphysique 
Saint Thomas et l’infini actuel de Dieu, au delà d’Aristote 

Le problème de la grâce de Marie 

L’évêque Templier (Paris 1275) 
P. Zellini, A brief history of infinity. Penguin, 2005 (italien : Adelphi, 1980) 
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Le débat metaphysique 
Saint Thomas et l’infini actuel de Dieu, au delà d’Aristote 

Le problème de la grâce de Marie 

L’évêque Templier (Paris 1275) 
P. Zellini, A brief history of infinity. Penguin, 2005 (italien : Adelphi, 1980) 

L’infini et les annonciations dans la peinture italienne  
Sara Longo, “L’annonciation en Italie. Enjeux méthodologiques …”, à paraître 

G. Longo.  “L'infini mathématique "in prospettiva" et les espaces des possibles”.  A 
paraître (téléchargeable)  

6 



Infinity in Mathematics, via Paintings 
Early perspective in Italian Renaissance (from Sara Longo, PhD Thesis):  

A. Lorenzetti “Annunciation”, God vs. Mary, 1344 

Masaccio, Beato Angelico ….       San Bernardino da Siena (1380-1444) :  
the Annunciation = l’incommesurabile nel misurabile 8 



Infinity in Mathematics, via Paintings 
Infinity “in the painting”: Beato Angelico, San Marco (1400-’55) 
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(Daniel Arasse, “Histoires de peintures”, 2004; Sara Longo, Thèse Doct., ’13)  



Infinity in Mathematics, via Paintings 
 Projective Geometry Italian Painting, XV century: Brunelleschi, 

L. B. Alberti, Della Pittura, 1435: Infinity “in the painting” 
Piero della Francesca: “Annunciations”, God vs. Mary, 1470 
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L’infinito nel quadro: la geometria proiettiva 

Piero della Francesca, 1466 



Infinity in Mathematics, via Paintings 

From infinity “in the painting” to the mathematics of infinity:  
Piero della Francesca   De perspectiva pingendi (~1450) 

Costruction of a “point of view”: 
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Sara, 13 



Wermer (1632-75) 

. … Van Frassen; Copernico … 
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SPACES IN PHYSICS 

The construction of space in Physics:  
First analyze trajectories (Aristotle, Galileo ...), then 

invent the right “spaces”  

No space in Euclid's geometry,  
the mathematical reference for Galileo. 
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SYMMETRIES AND SPACES IN PHYSICS 

The origin of Modern Physics (step 1):  

1 – Descartes spaces: 
    The space of all possible trajectories, defined by 
 symmetries 

2 - Galileo's inertia: 
 A momentum conservation law 

1 + 2 : Galileo's relativity group (the symmetry 
transformations that preserve the  physical invariants) 18 18 
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PHASE SPACES IN PHYSICS 

The construction of phase space in Physics (steep 2):  

 add the invariants that matter: 

-  Boltzmann, Poincaré (1880-90): analyze the trajectory in 
 “position, momentum” spaces  (since then the canonical “phase 
 space” of physics)  

-  Einstein: after the invariance of the speed of light (in its 

 trajectory), use Riemann's geometry in the classical phase space 

 (+time).  
- Thermodynamics:  

 the p, V, T space of the thermodynamic trajectory. 
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PHASE SPACES AND SYMMETRIES IN PHYSICS 

Thus the phase space is proposed on the grounds of  

– Symmetries (beginning with Descartes axes) 

–  Invariants of the trajectories (momentum), thus, again,  
symmetries (Noether’s theorems) 

Similarly for  E, t  (as for p, q;  all “conjugated variables” in QM) 
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PHASE SPACES AND SYMMETRIES IN PHYSICS 

Thus the phase space is proposed on the grounds of  

– Symmetries (beginning with Descartes axes) 

–  Invariants of the trajectories (momentum), thus, again,  
symmetries (Noether’s theorems) 

Similarly for  E, t  (as for p, q;  all “conjugated variables” in QM) 

“Put in the “background” the intended space of trajectories - the 
pertinent one for the trajectories:  

• parameters (space, time) and  

•  invariants observables (momentum, energy ...) 
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PHASE SPACES AND SYMMETRIES IN PHYSICS 

Thus the phase space is proposed on the grounds of  

– Symmetries (beginning with Descartes axes) 

–  Invariants of the trajectories (momentum), thus, again,  
symmetries (Noether’s theorems) 

Similarly for  E, t  (as for p, q;  all “conjugated variables” in QM) 

“Put in the “background” the intended space of trajectories - the 
pertinent one for the trajectories:  

• parameters (space, time) and  

•  invariants observables (momentum, energy ...) 

Also in QM:  the “wave or state function” goes along a trajectory in 
Hilbert Spaces (Schroedinger's choice of the phase space) 
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In summary: 

•  Analysis of trajectories (inertia) 
•  Equations,  
•  Symmetries (invariants) 
•  Phase space 
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In summary: 

•  Analysis of trajectories (inertia) 
•  Equations,  
•  Symmetries (invariants) 
•  Phase space 

Causes become interactions and these interactions themselves 
constitute the fabric of the universe of their manifestations, its 
geometry: modifying this fabric changes the interactions; 
changing the interactions modifies the fabric. (Bailly, Longo, ch.3) 

So far for the “structure of determination” 
in physics … 



A few words on Time 
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Time in the “geometric” vs “algebraic-formal” 
approaches to Mathematics  

In the “geometric” approach: time is the time of genesis of 
structures, the recording medium of their process of constitution.  

In the “algebraic-formal” approach: time is a matter of sequential 
functioning, of the execution of algorithms.  (Bailly, Longo, ch. 3) 
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Time in the “geometric” vs “algebraic-formal” 
approaches to Mathematics  

In the “geometric” approach: time is the time of genesis of 
structures, the recording medium of their process of constitution.  

In the “algebraic-formal” approach: time is a matter of sequential 
functioning, of the execution of algorithms.  (Bailly, Longo, ch. 3) 

In the Foundations of Mathematics, difference between: 
•   principles of construction (in particular those with a geometrical 
nature, symétries and order principles) 
  vs.  
•   principles of proof (formal principles of logical deduction).  

Mathematics is built up on the basis of both types of principles. 
(Bailly, Longo, introduction and ch. 1) 27 
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ENABLEMENT  in  BIOLOGY 

Longo G., Montévil M., Kauffman S. No entailing laws, but 
enablement in the evolution of the biosphere. 

 GECCO’12, July, 2012, Philadelphia (PA, USA); proceedings, 2012. 

Longo G., Montévil M.  Extended Criticality, Phase Spaces and 
Enablement in Biology.  

Special Issue of Chaos, Solitons and Fractals, 2013. 
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RECALL FROM PHYSICS 

Galileo, Newton: “Causal” relations: e. g. 

f = ma 

Since E. Noether, H. Weyl, … van Fraasen 
Geodetics and symmetries 

in the right phase spaces 

A unifying (better) frame for intelligibility of “causes”. 
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FROM PHYSICS TO BIOLOGY 

Biological analysis, since Darwin, use proper observables: 
 organisms (and phenotypes). 

E. g.:  Thermodynamics: entropy (and its proper principle)… 

Hydrodynamics, QM … later unify … 
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FROM PHYSICS TO BIOLOGY 

Biological analysis, since Darwin, use proper observables: 
 organisms (and phenotypes). 

E. g.:  Thermodynamics: entropy (and its proper principle)… 

Hydrodynamics, QM … later unify … 

Note: empirical evidence for causes: 

 differences causing differences 
E. g. identical acceleration implies identical force (Galileo's 
gravitation); yet, the “general law” is not evident (Newton). 

31 31 
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FROM PHYSICS TO BIOLOGY: ENABLEMENT 

Gravitation causes a body to fall 

Gravitation is not a cause in biology: it is a constraint, 

It contributes to the evo/devo in a niche/ecosystem. 
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FROM PHYSICS TO BIOLOGY: ENABLEMENT 

Gravitation causes a body to fall 

Gravitation is not a cause in biology: it is a constraint, 

It contributes to the evo/devo in a niche/ecosystem. 

Key reason:  
The default state in physics is inertia 

The default state in biology is “proliferation with 
variation”  (Darwin's first principle) and motility. 

Changing constraints (the formation of a new niche)  

Enables a variation to succeed 
A omnipresent phenomenon in evolution: allopatric speciation (a 
species formed from a population in a different niche/ecosystem) 
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 ENABLEMENT and CAUSES 

Claim:  (evident) causes are differential in biology 

A (a-causal/random) mutation (a difference) may cause a 
phenotypic difference. 
Bacteria (a difference from normality) may cause a pneumonia. 

Yet, this causal consequence may be enabled by the niche (a 
wounded lung, a weak immune system ..) 

A different role of constraints, in physics vs. biology due to the 
difference in the default states:  

 inertia vs. proliferation (with variation) 

An organism does not need a “cause” to be active (to move and 
proliferate): selection inhibits action. 
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 ENABLEMENT and CAUSES 

Different role of constraints, in physics vs. biology  

 Examples:  

1 - A river at a bifurcation: fully deterministic analysis (possible 
highly non linear, thus unpredictable) of inert (gravitational) 
matter, in a given space of observables (energy, momentum…). 

2 - A population proliferation facing a “niche multifurcation”: 
phenotypic variations are co-constitued with the possible 
enablement(s) by one or more possible evolutionary paths (a 
different default state) 

 In 1, the structure of determination describes causes;  

 in 2, it must include enablement. 
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 ENABLEMENT and CAUSES 

Different role of constraints, in physics vs. biology  

 Examples:  

1 - A river at a bifurcation: fully deterministic analysis (possible 
highly non linear, thus unpredictable) of inert (gravitational) 
matter, in a given space of observables (energy, momentum…). 

2 - A population proliferation facing a “niche multifurcation”: 
phenotypic variations are co-constitued with the possible 
enablement(s) by one or more possible evolutionary paths (a 
different default state) 

 In 1, the structure of determination describes causes;  

 in 2, it must include enablement. 

Physical objects never go wrong. 
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 ENABLEMENT and PHASE SPACES 

Enablement “enables” new organisms and phenotypes: 

 these are the proper observables  

Darwinian frame: Jacob’s bricolage, Gould’s exaptation (cavefish, 
lung-fish’s bladder, double-jaw …) 

On top of the physical phase space: add biological observables, 
the phenotypes. 

Compatible extensions of physical theories. 

The issue of randomness: different notions in physics …. 
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 RANDOMNESS and PROBABILITIES 

Biological randomness is “moved up”: 

 It is not within a pre-given phase space like in physics 

(from the 6 values of classical dice, to quantum measurement), 

The very phase space is randomly generated by the dynamics of 
evolution (ontogenesis). 

The impossibility to “measure” biological randomness by 
probabilities: probability is a measure between considered case(s) 
and a given space of possibilities. 

Which were the probability for Allucinoginea to survive? 

And the {tetrapod} to develop in a elephant or a squirrel? 
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 AUTONOMY and CONSTRAINTS 

Life is an entangled blend of autonomy and constraints. 

Autonomy (the Kantian whole/ autopoiesis) is possible only under 
ecosystemic (and autopoietic internal) constraints. 

Constraints have a biological meaning only because of the 
autonomy of organisms (because they interact with organisms). 

An organism can “stand” (adapt to) a slightly, yet ever changing 
ecosystem by its autonomy: it has a (relative) biological inertia. 

An ever changing inertial dynamics as based on internal 
proliferation with variation, essential to the autopoietic 
reconstruction.  
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 NON-ERGODICITY and CONVERGENCE 

Non-ergodicity: 

Evolution does not explore all possible molecular combinations: 

Impossible to produce all proteins length 200 amino acids in 10^39 
times the lifetime of the universe, even were all 10^80 particles 
making such proteins on the Planck time scale. 

Randomness and constraints: 

History, at the level of phenotypes, canalizes (sets constraints to) 
the exploration of new phenotypes. 

Similar functional constraints, possible interpretation for: 
•  The convergence of the vertebrate and pulp's eye; 

•  The anologies in the tasmanian (marsupial) and the mammalian wolf. 
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