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Quantum mechanics from scratch
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Three quantum features emphasized by the LKB photon box * AT IpsLw

1. Schrédinger: wave funct. |¢) € H,
d .
1) = —iHIY), H=Ho+uHy,

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp. > A, P,:

» measurement outcome  with proba. P, = (¢| P, 1))
depending on [¢)), just before the measurement
» measurement back-action if outcome p = y:

Py ¥)
(| Py 1)
3. Tensor product for the description of composite systems (S, M):

» Hilbert space H = Hs ® Hum
» Hamiltonian H=Hs® Ipy+ Hipe + 1s @ Hy
» observable on sub-system M only: O = Is ® Oyy.

) = [¥), =

1S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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The LKB Photon box ;4/7* | PSLx

The first experimental realization of a quantum-state feedback:

Theory: |. Dotsenko, ...: Quantum feedback by discrete quantum
non-demolition measurements: towards on-demand generation of
photon-number states. Physical Review A, 2009, 80: 013805-013813.
Experiment: C. Sayrin, ..., S. Haroche:

Real-time quantum feedback prepares and stabilizes photon number
states. Nature, 2011, 477, 73-77.
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Composite system (S, M): harmonic oscillator @ qubit. AT IpsLw

» System S corresponds to a quantized harmonic oscillator:

oS a0,

where |n) is the photon-number state with n photons

((n1|n2) = by nz)-
» Meter M is a qubit, a 2-level system:

Hm = {7/)g |g> +we|e> ‘ wnge S (C}v

where |g) (resp. |e)) is the ground (resp. excited) state

((glg) = (ele) =1 and (gle) = 0)

» State of the composite system |W) € Hs @ Hy:

W) =3~ (Vo [0} @ 1g) + Ve [n) @ 1e) )
n>0
= (Z"’ng |n>) ®|g) + (ane n)) @e), W, W,y €C.

n>0 n>0

Ortho-normal basis: ([n) @ [g),[n) ® |e)) -
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Quantum trajectories (1) AT IpsLw

R
R
2 D

B
V) N,

> When atom comes out B, the quantum state |W) g of the
composite system is separable: W)z = |1)) @ |g) .

» Just before the measurement in D, the state is in general entangled
(not separable):

(W)p, = Usm([v) @ g)) = (Mg [v)) @ Ig) + (Me 1)) @ [e)

where Usy = Ug,UcUg, is a unitary transformation (Schrédinger
propagator) defining the measurement operators M, and M, on
Hs. Since Usy is unitary, M{M, + M{M. = I.
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Quantum trajectories (2) AT IpsLw

Just before detector D the quantum state is entangled:
[W) g, = (Mg |9)) @ |g) + (Mc[¢)) @ |e)

Just after outcome y, the state becomes separable 2

W), = W vy | ®ly).

Outcome y obtained with probability P, = ()| MM, |1))..

Quantum trajectories (Markov chain, stochastic dynamics):

_ k g1 ¥k
|wk+1> o W |'l/1k> Yk = € with probablhty <'l/1k|MZMe"ll)k>,
k k

with state |1x) and measurement outcome yi € {g, e} at time-step k:

2Measurement operator O = Is ® (|e) (e| — |g) (g]).
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Quantum Non Demolition (QND) measurement of photons 3

|w>R2 = UR2UCuR1(‘w> o ‘g>)
" ‘ Ur, =15 (52 (el + (F251) (el)
%o

B

R2
Uc=e2"alg) (gl +e'2
[W)s \|\U Ur, = Ur
Un (W) 316)) = (W Sl + 1) )
1 0 l@N
Ueun (10 @ 12) = 5 ( (20 ol + (3710 wle))

W)= 3 (72" 0)) o) + 10+ (427 101) @ (- g + 1))

= (—isn(EN)) ) @le) + (cos(EN)[0) ) @ le)

Thus Mg = —isin(%2 N) and M. = cos(22 N).
Quantum Monte-Carlo simulations with MATLAB: QNDphoton.m

3M. Brune, ...: Manipulation of photons in a cavity by dispersive atom-field
coupling: quantum non-demolition measurements and generation of "Schrédinger cat"
states . Physical Review A, 45:5193-5214, 1992.
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Why density operators p instead of wave functions |?7b> ;j, | PSL%

Consider once again the LKB photon-box:
[¥k), yx = g with probability <¢vk|M;Mg|wk>;

|¥k), yk = e with probability <1/Jk|MZMeW)k>;

7T
rrn) = <wk|M Mg\wk>

<wk|MTM I )

Assume known |10) and detector out of order (y = @): what about |¢1) ?
> Expectation value of |¢1) (1] knowing |io): *

E (Ith1) (W] | [tho)) = Mg o) (0| M} + Me [3po) (tpo| ML.

> Set K(p) = MgpM' + M.pM! for any operator p.
> p, expectation of |1x) (x| knowing |¢o):

Pii1 = K(p,) and py = |vo) (1ol .

Linear map K: trace preserving Kraus map (quantum channel).
Density operators p: convex space of Hermitian non-negative operators of trace
one.

*|4b) (|: orthogonal projector on line spanned by unitary vector [¢)).
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Quantum trajectories for the density operator p /Zf | PSLx

Detector efficiency n € [0,1]. Output y € {g,e,@}:

Kg(Pk) Vi
Tr(Kg(p)'

Ke(py) . o
Pri1 =4 ——————, yx = e with probability Tr(K.(p,));
k+1 Tr(Ke(pk)) k ( ( k))

Kz (pi) Vi
Tr(Ka(pe)’

with Kraus maps

= g with probability Tr(K(py));

= @& with probability Tr(Kg(pk));

Ke(p) =nMgpM},  K.(p)=nM.pM!
Ko(p)=(1-n) (MgpML + Mele) :
We still have:

E (Pk+1 | Pk) £ K(py) = MngM; + MePkMTe = Z Ky (py)-
y
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Discrete-time quantum trajectories for open quantum systems
Four features:
1. Bayes law: P(u/y) = P(y/un)P(1) / (X, Bly/u)E(1)),
2. Schrédinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation are
induced by the measurement of observables with degenerate spectra.

4. Tensor product for the description of composite systems.

= Discrete-time Q. traj. : Markov processes of state p, (density op.):

_ Zm::_ ny,uMMPkMT . - m t
Pl = Tr(iﬂzl ny,HMMkaC’L)’ with prOba' Py(pk) n Zﬂ:l My T (M#pkMH)

associated to Kraus maps ® (ensemble average, quantum channel)

E (pis1lpn) = K(pk) = > MupeM], with > MM, =1
u I

and left stochastic matrices (imperfections, decoherences) (7y.,.).

®M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
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Open-loop dynamics (u = 0): experimental data AT IpsLw

y

diag(p) P
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Feedback stabilization around 3-photon state: experimental data

y

diag(p) P
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Continuous-time formulations
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Flashback to the LKB photon box

/%/f*\PSL*
C
R4

R
2 D

\‘W>R2

[W)g, = Usu|W)p = Usu([v) @ lg)) = (Mg ) @g) + (Me [v))) ® [e)
with M{Mg + MIM. = I.
e Quantum trajectories (Markov chain, stochastic dynamics):
Mg

W [¥k), vk = g with probability <wk|M;Mg|wk>;
|'l/1k+1> _ k Mge g1 ¥k

———=2——|*Yx), yx = e with probability <1/Jk|MZMeW;k>;
(xIMEMe |y )

»
)B

W

with state [¢x) and measurement outcome y, € {g, e} at time-step k:
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Continuous-time quantum trajectories (diffusive case)

6 yos | PSL*

e
Tvcn*

e The measurement outcome yi at discrete-time step k, is replaced by the
small among of measurement signal dy; € R obtained during an infinitesimal
time interval [t, t + dt].

e The measurement operator M,, becomes My, close to identity:

May =1+ (—H =3 (LL)) de + dyiL

where operator L (not necessarily Hermitian) describes the measurement
process and H is the Hamiltonian corresponding to the coherent evolution.
e The measurement backaction reads

Mgy, |9)
W,)Hdt — __ Tdn¥e

VLMY My, ),

dy?

o Probability density of dy € R knowing |1),: e\/_% (], MLdey [¥),.

Coincides up to order O(dt*?) terms to dy = (¢, (L + LT) [¢)), dt+ dW
where dWV is a Wiener process (Gaussian of zero mean and variance dt).
Quantum Monte-Carlo simulations with MATLAB: QNDqubit.m (L = o, H =0)

5For a mathematical exposure: A. Barchielli, M. Gregoratti: Quantum Trajectories
and Measurements in Continuous Time: the Diffusive Case. Springer Verlag,2009.
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Continuous/discrete-time Stochastic Master Equation (SME) AT IpsLw

Discrete-time models: Markov chains

D Dy Wy,uMu/’kML : _ m ( T)
Pkl = Tr(f),’fd MM with proba. Py (px) =32 "1 1y Tr (MupcM,,

with ensemble averages corresponding to Kraus linear maps

E (prs1lox) = K(px) = ZMMPkMT with ZMT =1

Continuous-time models: stochastlc differential systems
i 1
dpr = ( - ﬁ[vat] + Z LuPtLi - E(LZLVPt + PtLZLV)) dt

+ Z \/nj(Lth +pel] — Tr ((Ly + LZ)M) pt> dW, .

driven by Wiener processes dW,, ;, with measurements y, ;,
dy,t =/, Tr ((L,, + L:f,)pt) dt + dW, ;, detection efficiencies
7y € [0, 1] and Lindblad-Kossakowski master equations (7, = 0):

d ; 1
= i § ’ T_ 2t T
dtp— ;—L[Hap] ~ LVIOLV 2(LVLVp pLuLV)

"A. Barchielli, M. Gregoratti: Quantum Trajectories and Measurements in

Continuous Time: the Diffusive Case. Springer Verlag, 20009. 10 /26



Positivity-preserving formulation of diffusive SME 8 /Zﬁ | PSL*

With a single imperfect measurement dy: = /7 Tr (L + L") p¢) dt + dW,; and
detection efficiency n € [0, 1], the quantum state p; is usually mixed and obeys
to

, 1
dp: = <7é[H, pid+ el = 2(LTLp: +ptL*L)) dt
+ \/’ﬁ(l—,ﬂt + Ptl.]L — Tr ((L + LT)pt> Pt) dW;

driven by the Wiener process dW;

With ItG rules, it can be written as the following "discrete-time" Markov model
MdsztMLyt + (1 —n)Lp:L'dt
Tr (Mdyt peMi, 4+ (1— n)LptLTdt)

Pt+dt =
dye

with Mgy, = I + (—2H — 1 (LTL)) dt + \/ndy.L.

po density operator — for all t > 0, p; density operator

8Such SME precisely describe cutting-edge experiments with superconducting
qubits under homodyne and heterodyne continuous-time measurements. See, e.g., the
group of Benjamin Huard at ENS-Lyon: http://www.physinfo.fr/index.html.
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Conclusion: two kinds of quantum feedback
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Measurement-based feedback AT IpsLw

P-controller (Markovian feedback ?):

-
’ s S N for u; dt = k dy;, average closed-loop
p A «  dynamics of p remains governed by a
¢ 7\je°°herence A Lindblad master equation.
4 \
controller: no Lindblad master
I a4 L PID controller: no Lindblad
_|—) system jequation in closed-loop;
\ . . :
N y d Nonlinear hidden-state stochastic
~ 3uantum World’ ’ systems: convergence analysis,
. N o = Lyapunov exponents, dynamic output
classical world y feedback, delays, robustness, ...
controller j€— “H.M. Wiseman: Quantum Trajectories

and Feedback. PhD Thesis,
University of Queensland, 1994.

Short sampling times limit feedback complexity
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Coherent (autonomous) feedback (dissipation engineering) AT psLx

e
Tvcn*

Quantum analogue of Watt speed governor: a dissipative mechanical
system controls another mechanical system °

; - Optical pumping (Kastler 1950), coherent
classicalworld o h \ population trapping (Arimondo 1996)
Vs N
P T G Y y Dissipation engineering, autonomous
Uc VV/ N feedback: (Zoller, Cirac, Wolf, Verstraete,
_H —L> Devoret, Schoelkopf, Siddiqi, Lloyd, Viola,
4 system 1 Ticozzi, Leghtas, Mirrahimi, Sarlette, ...)
4 |u> 1 (S,L,H) theory and linear quantum
i quantum world ] systems: quantum feedback networks
1 |y> Vs based on stochastic Schrédinger equation,
controller | Heisenberg picture (Gardiner, Yurke,
1 N - X4 Mabuchi, Genoni, Serafini, Milburn,
1 v A s Wiseman, Doherty, Gough, James,
decoherence ¢ s Petersen, Nurdin, Yamamoto, Zhang,
\/— - Dong, ...)

- =

Stability analysis: Kraus maps and Lindblad propagators are always
contractions (non commutative diffusion and consensus).
9J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
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Inria Quantic project with ENS, Mines and Yale ?{,\Psu

WWM{ coharenfendbnc %WVW\“ e Quantic in Paris®: 3 theoreticians, 1
||.J,:|| e experimentalist, 4 PhD, 2 PostDocs.
e Development of theoretical methods
and experimental devices ensuring
robust processing of quantum

|$| - information.
qubit
' “https://team.inria.fr/quantic/

high Q mode a
(logical qubit) 5

25
N7 °

readout mode
(measurement-based feedback)

e Address Quantum Error Correction (QEC) in a new direction™®:

instead of relying on a large number of physical qubits and collective syndrome
measurements to obtain a logical qubit, engineer a logical qubit of tunable high
fidelity, localized in a single harmonic oscillator (cat qubit), relying on
measurement-based and coherent feedback schemes, exploiting typical
nonlinearities of Josephson superconducting circuits, and subject essentially to
one error channel (finite photon life-time).

10\, Mirrahimi, Z. Leghtas, V.V. Albert, S. Touzard, R.J. Schoelkopf, L.
Jiang, and M.H. Devoret. Dynamically protected cat-qubits: a new paradigm

for universal quantum computation. New Journal of Physics, 16:045014, 2014.
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Qubit (2-level system, half-spin) 1! AT psix

» Hilbert space:
Hy =C? = {cg lg) +cele), ¢ ce € C}.

» Quantum state space:
D={pecL(Hu)p' =p, Tr(p)=1,p>0}.

» Operators and commutations:
o =|g) (el oy = af =e) (g] q
ox = o + a1 = |g) (e| + e) (gl \VAVaV.V, GO
oy = io. —ioy. = i|g) (e| —ile) (g];
o; = oy0. — 0.0y = |e)(e| — [g)(gl;
ol =1, 0,0y = i0y, [ox, 0y] = 2i0y, ...

e)

<---->

9)

> Hamiltonian: Hy/h = wqo;/2 + ugox.

> Bloch sphere representation:
D= {%(I—&-xa’x +yoy+z0;) | (x,y,2) ER3, X2+ y? + 2% < 1}

11 Gee S. M. Barnett, P.M. Radmore: Methods in Theoretical Quantum

Optics. Oxford University Press, 2003.
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. . . 24
Quantum harmonic oscillator (spring system) 11 AT IpsLw

> Hilbert space:
Hs = {ano Ynln), (Yn)n>o € /2(<C)} = [2(R,C)

» Quantum state space:

D={peL(Hs),p' =p, Tr(p)=1,p>0}. —_— )
> Operators and commutations:

aln) =+/n|n-1), a' |n) =v/n+1|n+1);

N = a'a, N |n) = n|n);

[a,al] =1, af(N) = f(N + I)a; y 2

D, = eaa*—cﬂa c (’Oci

a—X—i—IP—f(x—i—aX) [X,P]=:l/2. I ’1>
» Hamiltonian: Hs/h = w.a'a + u.(a+ af). (DCE

(associated classical dynamics: A4 0)

d dp
G = Wep, G = —WeX — ﬂuc).
> Classical pure state = coherent state |«)
1 “@Xgae,%

aeC: |a)= ano (e*\a|2/2%) [n); |a) = —7ae
ala) = ala), D, |0) = |a). 26 /26
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